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ABSTRACT 

Using coupled mode approach, an expression is obtained for the effective nonlinear optical 

susceptibility of transversely magnetized (TM) semiconductors under the off-resonant optical 

transition regime. The origination of laser-semiconductor interaction is considered in the nonlinear 

polarization arising via piezoelectric and electrostrictive properties of TM semiconductor. For 

numerical analysis, we consider the illumination of n-type doped indium antimonide sample by a 

pulsed carbon di-oxide laser at 1.78×1014 s-1 frequency. The authors make the effort for optimizing the 

doping concentration of the chosen sample and TM field to achieve enhanced values of quadratic and 

cubic optical nonlinearities of the chosen nonlinear medium. The authors found good agreement 

between their calculated values and the experimental observed values of quadratic and cubic optical 

nonlinearities. The analysis establishes that the quadratic and cubic optical nonlinearities of TM 

semiconductors can be increased by the significant amount by properly selecting the doping level and 

TM field, which proves the potential of chosen nonlinear medium for the fabrication of efficient and fast 

responding optoelectronic devices. 

 
1.  Introduction 

In nonlinear optics, the enhancement of quadratic and 

cubic optical nonlinearities has been an interesting subject 

matter of research owing to their importance in fabrication of 

optoelectronic devices. The knowledge of quadratic and cubic 

optical nonlinearities provides necessary significant 

information regarding nonlinear optical characteristics of the 

nonlinear media [1, 2]. Among various existing and fabricated 

nonlinear optical materials, the elemental as well as compound 

semiconductors offer enormous litheness in the design and 

fabrication of modern optoelectronic devices. It is because:  

(i) the carrier’s recombination time of elemental as well as 

compound semiconductors can be controlled via fabrication 

and device structuring;  

(ii) the change in either coefficient of absorption and/or 

index of refraction of elemental as well as compound 

semiconductor may be used for device fabrication;  

(iii) the elemental as well as compound semiconductor 

based optoelectronic devices may be operated under the 

normal/ oblique incidence as well as in waveguides;  

(iv) the elemental as well as compound semiconductors 

based  optoelectronic devices use conventional semiconductor 

technology; and  

(v) the elemental as well as compound semiconductors 

based optoelectronic devices can be easily integrated with 

other optoelectronic components.  

Till date, the quadratic and cubic optical nonlinearities in 

the resonant transition regime, owing to their large values, 

have been used to enhance the efficiency of conversion of 

optoelectronic devices [3]. But these nonlinearities suffer from 

the serious drawback. The operating speed of the resonant 

quadratic and cubic optical nonlinearities based optoelectronic 

devices are very slow because the resonant quadratic and cubic 

optical nonlinearities are strongly dependent on the change in 

population incurred during the real transitions, buildup of 

photon energy and the time of relaxations. On the other hand, 

the non-resonant quadratic and cubic optical nonlinearities are, 

in general, comparatively smaller than the resonant quadratic 

and cubic optical nonlinearities but demonstrate much faster 

responses, because these does not entail the creation and 

relaxation of charge carriers.  

In the future high speed optical communication systems, 

the non-resonant quadratic and cubic optical nonlinearities of 

compound semiconductors have found technologically 

important. Therefore, looking at the potential of non-resonant 

quadratic and cubic optical nonlinearities in future fast optical 

communications and to get better the performance of modern 

optoelectronic devices, there is a great need to enhance the 

non-resonant quadratic and cubic optical nonlinearities of 

compound semiconductors. Literature survey reveals that the 

doping (free carrier concentration), compassioning, and micro-

level structuring techniques have been generally used to 

improve the efficiency and other parameters of compound 

semiconductor based devices in today’s optoelectronic device 

technology [4 - 6].  

The quadratic and cubic optical nonlinearities of 

compound semiconductors can be tailored by the application of 
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an external TM field. This technique has been used in deep 

understanding the mechanisms included in various nonlinear 

processes including electro/magneto-optic effects. In the 

present paper, we develop a mathematical model to obtain 

expressions for effective quadratic and cubic optical 

susceptibilities ( )2(

eχ  and )3(

eχ ) of TM semiconductors. 

 

2.  Objectives 

� To find the suitable values of carrier’s concentration and 

applied TM field for enhancing the magnitude of )2(

eχ  and 
)3(

eχ  and change of their sign. 

� To establish the potential of TM semiconductors for the 

fabrication of modern optoelectronic devices. 

 

3.  The Model 

Let us consider the illumination of a compound 

semiconductor by an intense pump (laser) beam )ˆ,( 111 zkE ω
�

 

such that the photon energy ( 1ωℏ ) of pump wave is slightly 

less than the band-gap energy (
gωℏ ) of the chosen compound 

semiconductor. Under this (off-resonant laser irradiation), the 

optical characteristics of the chosen compound semiconductor 

are affected by the doping level and remains un-affected by the 

photon-induced inter/ intra-band transitions. The force exerted 

by the pump wave on semiconductor is the cause of 

nonlinearity. The present mathematical formulation is carried 

out under the hydrodynamic model of semiconductor-plasmas. 

In this model, the wavelength linked with the lattice vibrations 

is sufficiently greater than the distance between the lattice 

points of the semiconductor crystal. 

The (high frequency) oscillating pump field induced the 

electrostrictive and the piezoelectric strains and is thus derive 

an acoustic wave in the TM semiconductor. Under the 

influence of these strains, let the lattice point of semiconductor 

crystal gets deviated from its equilibrium coordinate z  

through a distance ),( tzu . Thus, the strain developed in the 

pump wave propagation direction may be expressed as: zu ∂∂ /

. The effective force acting in the pump wave propagation 

(along +z) direction per unit volume of the TM semiconductor 

crystal can be expressed as: 

[ ]2

11 5.0)( EE
z

f eff γ+β−
∂

∂
= ,                                        (1) 

where β  is electrostriction coefficient and γ  is 

piezoelectric coefficient of chosen TM semiconductor. The 

equation of motion for ),( tzu  may be expressed as:  
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where ρ , C , and Γ  stand for the semiconductor crystal 

density, semiconductor elastic coefficient and the damping 

coefficient (introduced phenomenologically) of chosen 

semiconductor, respectively. Here, it is assumed that the 

acoustic wave set up in the TM semiconductor crystal is a 

travelling plane wave and defined as:  

)]ˆ(exp[ 2222 zktiEE −ω=
�

.                                             (3) 

The acoustical wave set up in the chosen TM 

semiconductor causes the scattering of the pump wave (at 3ω ) 

that corresponds to the frequency of the material excitations, 

which, consequently causes the modulation of relative 

permittivity of the TM semiconductor. This leads to an 

exchange of photon energy among the electromagnetic 

radiations differing in frequency by an amount equal to the 

frequency of generated acoustic wave. Here, it should be noted 

that, the scattered wave is also a travelling plane wave and it 

may be defined as: )]ˆ(exp[ 3333 zktiEE −ω=
�

.  

Here, it should be mentioning that the pump beam is an 

infrared pulsed laser having frequency 21 ω>>ω  with pulse 

time duration 1−Γ>pt . This condition allows treating the 

laser-semiconductor interaction as a quasi steady-state 

interaction. In the presence of optical and TM fields, the 

equations describing the motion of doped (free) carriers may 

be expressed via 0th and 1st order momentary transfer equations 

as: 
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In Eqs. (4a) and (4b), the parameters 0v  and 1v  stand for 

the steady-state and perturbed fluid velocities of doped carrier 

(viz. an electron) of effective mass m  and charge e− , 

respectively. ν  represents the electron collision frequency. 

[ ]
qe BvEE
����

×+= 01  is the net electric field; including the 

magnetic Lorentz’s force ( qBv
��

×0 ). At optical frequencies, the 

net field exerts force on the doped (electron) carrier’s because 

of their small effective mass. 

The needful equations employed in the derivation of 

quadratic and cubic optical susceptibilities of TM 

semiconductors are:  
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Eq. (5) is continuity equation. Here, 0n  is the equilibrium 

doped carrier’s density, and 1n  is the perturbed doped carrier’s 

density. Eq. (6) is the Poisson’s equation and it determines the 

space-charge electric field scE  originating via electrostrictive 

and piezoelectric strains and via density perturbations in the 

TM semiconductor. Other quantities have their usual 

meanings. 

The nonlinear interaction between the charge carriers 

(electrons) and the acoustic wave set up in the TM 

semiconductor is the origin of optical nonlinearity. Further, we 

consider that 1<<τωc , where the charge carrier does not have 

much chance of being deflected by the pump field before 

undergoing a collision, this distance is the carriers mean free 

path l . On the other hand, under the influence of strong TM 

field, 1>>τωc , the charge carriers are able to make several 
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revolutions in their orbits before their scattering occurs and this 

distance ~ cyclotron radius. In compound TM semiconductors, 

the equation of carrier fluctuations can be derived from Eqs. 

(1) - (6) as: 
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2 ρ= Cv  is the velocity of acoustic phonon mode in 

the TM semiconductor, and 

 ]2()[,( 2

2
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2
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2
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2 ωΓ+−ω=ωω ivkkD  stands for the acoustic-

wave dispersion.  

While deriving Eq. (7), we neglected the Doppler’s shift 

under the condition 221 vk>>ω . For pump energy very much 

less than the band gap energy of TM semiconductor i.e. 

gω<<ω ℏℏ 1 , the scattered anti-Stokes field can be neglected 

and only the scattered Stokes field is considered [3]. The 

resonant scattered Stokes component may be obtained by using 

the phase matching constraints: 213 ω−ω=ω and 213 kkk
���

−= .  

The perturbed carrier’s concentration 1n  consists of two 

frequency components viz., slow frequency component of 

carrier concentration ( sn1 ) and fast component of carrier 

concentration ( fn1 ). The slow frequency component of carrier 

concentration oscillates at the acoustic phonon mode frequency 

while the fast component of carrier concentration oscillates at 

Stokes mode frequency. In the present mathematical modeling, 

the resonant sideband frequencies ( 21 ω±ω q ), (with q  = 1, 2, 

3, …) are considered under the assumption that the interaction 

path of carriers is sufficiently long. Moreover, the higher-order 

Stokes components (for 2≥q ) of resonant side band 

frequencies have been neglected under off-resonant laser 

irradiation and only the first-order resonant Stokes component 

(with 1=q ) has been taken into account. Under RWA, Eq. (7) 

may be split into to the following coupled mode equations: 
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Eqs. (8a, b) demonstrate that sn1   and fn1  of perturbed 

carrier concentration are coupled via the pump field. The 

expression for 
*

1sn  may be obtained as:  
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The resonant stokes component of the effective value of 

nonlinear current density arising via perturbed carrier density 

may be derived by using the equation:  

111033 ),( evnevnkJ sse +=ω .                                          (10) 

 In coupled-mode theory of interacting waves, the time 

integral of ),( 33 kJ e ω  gives the effective value of nonlinear 

polarization as: 

dtkJP ee ),( 33ω= ∫ .                                                      (11) 

Using Eqs. (9) – (11), the effective value of nonlinear 

polarization may be obtained as: 
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Using Eq. (12), and the generalized equation describing 

the effective value of nonlinear polarization viz., 

[ ]...3)3(2)2()1(

0 +χ+χ+χε= EEEPe , the various orders (viz. 

first, second, third, …) of optical susceptibilities of TM 

semiconductors can be obtained as:  
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Eqs. (14) and (15) reveal that that the origin of quadratic 

optical susceptibility 
)2(

eχ  lies in the finiteness of both the 

electrostrictive coefficient γ  and the piezoelectric coefficient 

β . On the other hand, the origin of cubic optical susceptibility 
)3(

eχ  lies in finiteness of the electrostrictive coefficient γ  while 

the piezoelectric coefficient β  adds new dimension.  

Eqs. (13) – (15) also reveal that the linear, quadratic, and 

cubic optical susceptibilities, all are complex quantities. The 

imaginary and real parts of 
)1(

eχ  account for the linear 

absorption and index of refraction. The quadratic optical 

susceptibility 
)2(

eχ  gives rise the 2
nd

 order optical effects. The 

cubic optical susceptibility 
)3(

eχ  gives rise the 3
rd

 order optical 

effects. 
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4.  Results and discussion 

For the numerical estimation of quadratic and the cubic 

optical susceptibilities ( )2(

eχ  and )3(

eχ ), the authors considered 

the irradiation of an n-type doped indium antimonide crystal by 

a pulsed carbon di-oxide laser. The physical parameters of the 

chosen laser-semiconductor interaction system are given in the 

Ref. [7]. Fig. 1 depicts the 3D variation of real part of )2(

eχ  and 
)3(

eχ  with TM field 
qB  and doping concentration 

0n . 

 

 
Figure 1. 3D variation of 

)2(

rχ  and 
)3(

rχ  with 0n  and qB . 

 

It can be seen that the TM field significantly modifies the 

real part of quadratic and cubic optical susceptibilities (
)2(

rχ  

and 
)3(

rχ ). Both 
)3,2(

rχ  exhibit sharp peak as well as change of 

sign (from negative to positive) exactly at TM field 10=qB  

and 14 T because of the resonance conditions 
2

0

2 ~2 ωωc  and 
2

0

2 ~ ωωc , respectively. Thus around resonances, the Lorentz 

contribution of TM field is very effective in enhancing 
)3,2(

rχ  

in TM semiconductors. However, in the regime 

2.1410 ≤≤ qB T, 
)3,2(

rχ  are fairly independent of qB . Thus 

around off-resonances (
22

1

22 cc ω≤ω≤ω ), the Lorentz 

contribution of TM field is absent. With further increasing TM 

field qB , 
)3,2(

rχ  drops quickly because of the departure from 

resonances and saturating at a comparatively smaller value. 

Also, the doping concentration imparts significant role in 

modification of 
)3,2(

rχ . 

 

 
Figure 2. 3D variation of 

)2(

iχ  and 
)3(

iχ  with 0n  and qB . 

 

For ))/(1))(/2(1([ 2

1

22

1

2

33 ωω−ωω−ω=ω<ω ccmp , both 
)3,2(

rχ  are negative and falls rapidly with pω . With slightly 

making the tuning between pω  and m3ω , a sharp rise in both

)3,2(

rχ  are observed. When 
pω  is sharply tuned with 

m3ω , both 
)3,2(

rχ  vanish. This critical TM field dependence of both )3,2(

rχ  

can be used to fabricate the nonlinear optical switches. After 

resonances, both )3,2(

rχ  rise quite sharply and achieve maxima 

at ν+ω=ω mp 3
. 

Fig. 2 depicts the 3D variation of imaginary parts of )2(

eχ  

and )3(

eχ  with TM field 
qB  and doping concentration 

0n . 

Here, instead of change of sign, both )3,2(

iχ  exhibit peak 

around 
mp 3~ ωω . Around resonance, the electron’s drift 

speed, which is strongly dependent of TM field increases 

significantly and it becomes much greater than the acoustic 

wave speed. Consequently, the photon energy transfer from 

pump to acoustic wave increases, thereby enhancing )3,2(

iχ . 

The calculated values of real and imaginary parts of )2(

eχ  

and )3(

eχ  for the indium antimonide sample in the presence and 

absence of TM field are represented in Table 1. 

 

Table 1. Calculated values of 
)2(

iχ , 
)2(

rχ , 
)3(

iχ  and 
)3(

rχ  for n0 = 

2×1022 m-3. 

Nonlinear 

optical 

susceptibilities 

TM field 

Bq = 0.0 T Bq = 10.0 T Bq = 14.2 T 

)2(

iχ (mV-1) 2.10×10-11 3.92×10-9 9.47×10-9 
)2(

rχ (mV-1) 2.12×10-11 4.20×10-9 1.22×10-8 
)3(

iχ (m2V-2) 1.16×10-19 3.90×10-17 9.60×10-18 
)3(

rχ (m2V-2) 1.19×10-19 4.18×10-17 1.17×10-17 

 

5.  Conclusions 

In this paper, a numerical analysis is performed to estimate 

the quadratic and cubic nonlinear optical susceptibilities of TM 

semiconductors. The proper selection of TM field and doping 

concentration is found to enhance the quadratic and cubic 

optical nonlinearities of TM semiconductors as well as change 

of their sign. The mathematical model developed proves the 

potential of TM semiconductors for the fabrication of efficient 

and fat responding optoelectronic devices. 
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