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ABSTRACT 

The presence of a two-dimensional spatial soliton in a Kerr medium with periodically variable 

diffraction and alternating nonlinearity has been investigated by the author in this study. The 

variational technique has been utilised to generate a set of ordinary differential equations that explain 

the evolution of the optical beam. Analytical and computational investigations have demonstrated that 

diffraction control and nonlinearity control sustain the beam against decay or collapse and allow for 

uninterrupted propagation even at higher incident beam energy. 

 
1.  Introduction 

Recent years have seen a lot of interest in spatial solitons 

in nonlinear media. Interest has grown in the notion of all-

optical switching by utilising nonlinear optical phenomena, 

and it is in this context that the self-guiding spatial solitons 

find significance. In a Kerr medium, where the refractive index 

changes positively with intensity, the index rises as light 

intensity rises. When the refractive index is higher in the 

centre of the beam than at its wings, a light beam can create a 

dielectric waveguide for itself. In this self-formed dielectric 

wave guide, the light beam propagates without spreading. The 

tendency for the beam to spread owing to diffraction and the 

tendency for the beam to compress due to self-focussing may 

be seen as two opposing tendencies that are dynamically 

balanced in this phenomena. While this type of dynamic 

balancing in (1 + 1) dimensional spatial solitons has received 

much research, its equivalents in two dimensions have 

received less attention. A (2 + 1) dimensional soliton that is 

self-guided in both transverse dimensions is unstable against 

collapse, in contrast to (1+1) dimensional spatial solitons. 

Because two-dimensional fluctuations may upset the 

equilibrium between the nonlinearity and diffraction, (2 + 1) 

dimensional spatial solitons in media with the Kerr 

nonlinearity are unstable [1].  

Dispersion management, also known as the periodic 

reversal of the sign of local group-velocity dispersion (GVD), 

is a typical use in fibre optics. Dispersion controlled solitons 

are advantageous compared to regular solitons because they 

are resistant to the Gordon-Haus timing jitter [2]. A 

dispersion-management-inspired model for the propagation of 

an optical beam in a diffraction-managed nonlinear waveguide 

array was created [3]. Discrete diffraction spatial solitons and 

dispersion controlled solitons have many characteristics, 

highlighting the diversity and universality of solitons [4], 

despite the fact that optical diffraction and chromatic 

dispersion come from distinct physics. The presence of a 

dispersion-managed soliton in a two-dimensional cubic 

medium has been investigated analytically and numerically 

[5]. In two-dimensional (2D) Kerr-type optical media and 2D 

Bose-Einstein condensates, it has been shown that nonlinearity 

control can stop solitons from collapsing [6–8]. The stability 

of a 2D spatial soliton in Kerr media with regularly variable 

diffraction and alternating nonlinearity has been studied in this 

study. 

 

2.  Variational analysis 

The field dynamics in bulk Kerr medium with varying 

diffraction and nonlinearity is governed by cubic nonlinear 

Schrodinger equation, 

 

2( ) ( ) 0i d z z
x

∂ψ
+ ∆ψ + λ ψ ψ =

∂
,                                     (1)  

 

where λ(z) = λ0+ λ1(z)  

 

and d(z) = d0 + d1(z)  

 

represent varying nonlinearity and varying diffraction 

respectively and ∆ = ∂
2
/∂r

2 
+ (1/r)(∂/∂r), for axially symmetric 

case.  

The variational approach applied to (1) was originally 

proposed [9] and developed in nonlinear optics for one 

dimensional (1D) problems and then for multidimensional 

problems [10]. The Lagrangian density generating (1) is:  
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The asterisk stands for complex conjugation and D is the 

spatial dimension . The variational ansatz for the wave function 

is chosen as Gaussian: 
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where A(z) is the amplitude, a(z) is the beam width, b(z) is 

the spatial chirp, φ(z) is the phase respectively.  

Following the standard procedure, we insert the trial 

function in to the expression for Lagrangian density and 

calculate the effective Lagrangian asd [11]:  
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where CD = 2π in two dimensional case. 
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Varying (5) with respect to unknowns in the initial profile, 

i.e.,  

 

0
effL

p

δ
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δ
,                                                                         (6)  

 

where p = φ(z), a(z) and b(z) yields the following 

equations:  

 

πA
2
a

2
 = N,                                                                        (7)  

 

where N is the conserved quantity associated with the 

energy of the beam. 
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The equations (8) and (9) are the expressions for beam 

width and chirp respectively.  

A closed-form evolution equation for width is:  
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where U is given by 
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Hamiltonian H(a, da/dz, z) is given as: 
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The evolution of beam can be considered as motion of a 

particle of variable mass 1/d(z) in non stationary effective 

anharmonic potential U(a, z) [12–14]. When coefficient of 

diffraction and nonlinearity are constants, total energy is 

conserved and is given by 
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where C = 2d0 − Nλ0/2π. Obviously total energy goes to ∞ 

as beam width tends to zero. This means that in the absence of 

varying diffraction and nonlinearity 2D soliton is expected to 

collapse. The condition, C = 0 gives the upper bound of 

energy, known as critical energy Ecr = 2, (when d0 = 1 and λ0 = 

1) above which collapse occurs. Small fluctuations in the 

intensity of the incident beam, causes the intensity of the beam 

in the medium infinitely large, and this will finally result in the 

size of the beam fully diminished. Numerical studies have 

shown that periodic modulation of nonlinearity and diffraction 

help to arrest this collapse due to self focussing of the beam.  

 

3.  Numerical analysis 

The differential equations (8) - (10) and partial differential 

equation (1) have been studied numerically for various set of 

parameters of diffraction and nonlinearity and the results are 

displayed in Figures 1-3.  
 

 
Figure 1. Variation of a(z) for constant diffraction and nonlinearity 

with parameters d0 = 1, d1 = 0, λ0 = 1, λ1 = 0, a(0) = 1, b(0) = 0, E = 

N/2π = 2.303. 
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Figure 2. Variation of a(z) for periodically varying diffraction and 

nonlinearity with propagation distance for the parameters d0 = 1, d1 = 

3.5, λ0 = 1, λ1 = −3.5, Ω = 50, N/2π = 4.5, a(0) = 1, b(0) = 0. 

 

 
Figure 3. Evolution of two dimensional spatial soliton for periodically 

varying diffraction and nonlinearity according to numerical solution 

of equation (1) with parameters d0 = 1, d1 = 3.5, λ0 = 1, λ1 = −3.5, Ω = 

50, a(0) = 1, b(0) = 0, E = N/2π = 4.5. 

 

Case (1): When coefficient of diffraction and nonlinearity 

are constants, i.e., d1 = 0 and λ1 = 0, the velocity dependent 

term in equation (10) vanishes. The pulse collapses when 

energy increases above the critical value. Variation of pulse 

width a(z) is as shown in Figure 1. After a finite propagation 

distance, a goes to zero and chirp goes to ∞ i.e. the 2D soliton 

is expected to collapse.  
Case (2): When both coefficient of diffraction and 

nonlinearity are varying periodically, i.e. d(z) = d0 + d1 sin 

Ω(z), and λ(z) = λ0+λ1 sin Ω(z), variation of beam width a(z) 

with propagation distance is as shown in Figure 2. The beam 

width does not decrease below a particular level when the 

nonlinearity and diffraction parameters are functions with 

periodic variations. It oscillates in this condition. The issue 

resembles an inverted pendulum with an oscillating pivot point 

because of the periodic component in the diffraction and 

nonlinearity [15]. A pseudo potential is created in the inverted 

pendulum by the interaction of the bob's minute motion and the 

force gradient (the higher the divergence from equilibrium, the 

stronger the oscillating force). The formation of a potential 

barrier around the equilibrium point prevents the pendulum 

from swinging downward because pseudo potential is 

proportional to the square of oscillation force [16]. An optical 

beam propagating in a nonlinear medium with alternating 

nonlinearity is also stabilised by such a process [17]. In this 

instance, the self-focusing and de-focusing forces brought on 

by alternating nonlinearity are offset by the oscillating force 

resulting from the diffraction control. These pressures are 

precisely balanced to keep the system from collapsing. Using 

the 2D fast Fourier transform, the partial differential equation 

(1) is numerically simulated [18]. We have considered the 

problem in cartesian coordinates ∆ = ∂2/∂x2+∂2/∂y2 and r2=x2 + 

y2, to perform numerical simulation. Figure 3 depicts two-

dimensional spatial soliton propagation in accordance with the 

numerical solution of equation (1). Diffraction control and 

nonlinearity control maintain the beam's stability against decay 

or collapse and allow for uninterrupted propagation even at 

higher incident beam energies. 
 

4.  Conclusions 

In Kerr media with regularly variable diffraction and 

alternating nonlinearity, we investigated the possibility of two-

dimensional spatial solitons. A series of ODEs that explain the 

development of the optical beam have been derived using a 

variational technique. Diffraction control and nonlinearity 

control sustain the beam against decay or collapse and allow 

for uninterrupted propagation even at higher incident beam 

energy, according to analytical and numerical studies. 
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