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1. Introduction

The theory of detecting and correcting the error was first
introduced by Claude Shannon in 1948 in his paper
“Mathematical Theory of Communication”. In his paper
Shannon said that we can easily transmit any information by
coding. There are number of special codes such as cyclic codes,
Linear codes, Group codes, polynomial codes etc. Our interest in
this paper is to study a very important class of codes called
“Cyclic Codes”.

In general while examine cyclic codes over finite field F
most often the code words are presented in polynomial form.
The correspondence between the n- vector C = cyc;...c, | over
F and the polynomial c(x) = ¢y + .. +e, X in Flx] of at
most n-1 degree is one to one and onto. This allows us the
latitude of the vector notation C and the polynomial notation
c(x) inter changeably. Notice that if c(x) = ¢o + cjx+...+ X!
then xc(x) = ¢, X" + CoX + 1 X+...+ c,oX"" represents the code
word C cyclically shifted one to the right if x" were set equal to
1. Equivalently, as the cyclic code C is invariant under a cyclic
shift implies that if c(x) is in C then so is xc(x) provided we
multiply modulo x"-1. This fact allows us for studying cyclic
codes in the residue class ring

__Fi»
C<x' -1
It is also easily seen that
F(x)
C<x'—1>
Where FC, is the group algebra of the cyclic group C, of
order n over the field F. Under the correspondence of the vectors
with polynomials as given above, cyclic codes are ideals in R,
and ideals in R, are cyclic codes. Therefore, the study of cyclic
code over the finite field F is equivalent to the study of the
ideals in R, or F'C,, the group algebra of the cyclic group C, of
order n over the field F. It is well known that the study of ideals

n

= FC,

n

This paper gives a brief survey of primitive idempotents in cyclic group algebras for different cases. The
expressions for these idempotents are listed. Initially the structure for cyclic codes is given.

in R, completely depend on factorization of x"-1 over F.
Interesting it is also well known fact x"-1 has no repeated
irreducible factors if and only if g.c.d (n, char(F)) =1. As F[x] is
principal ideal domain then so is R,. Thus a cyclic code, being
ideal in R, may have a variety of generating polynomial.

Through out for our discussion of cyclic codes we make the
basic assumption that char (F)- the characteristic of the field F
does not divide n- the length of the cyclic codes. This
assumption also implies that R, is semi-simple and thus the
Weddernburn structure theorem is applicable. The theory of
cyclic codes with g.c.d (n, char(F)) #1 is discussed in [1-5; 8-20;
22], but today these “repeated roots” cyclic codes don’t seems
to be of much interest.

2. Primitive idempotent

Besides the generating polynomial, there are many other
polynomials that can be used to generate a cyclic code. One such
polynomial called an idempotent generator, can also be used to
generate a cyclic code. As the ring R, is semi-simple therefore
each ideal in R, contains a unique idempotent which also
generates the ideal. This idempotent is called the generating
idempotent of the corresponding cyclic code. The idempotent
generating the minimal ideal (minimal code) in R, is called a
Primitive idempotent.

It is well known that the generating polynomial g(x) of
the ideal in R, is a factor of x"-1. Thus the study of ideal through
the generating polynomial depends on the factorization of x"-1
over the field F. But the factorization of x"-1 into its irreducible
factors in itself is a very difficult problem. To overcome the
problem of factorization, we deal with the idempotents that
generates the ideals. These idempotents then help us to describe
the cyclic codes completely.

Let F = GF(l) be a finite field of order / and n be any
integer such that char (F) does not divide n.

[CHON
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Consider the set

§={0,1,2,...,n-1}.

Fora, b € S, say thata~bifa= bl (mod n) for some
integer i > 0. This is an equivalence relation on set S. The
equivalence classes of this relation are called /- cyclotomic
class modulo n. The /-cyclotomiccoset modulo n containing
SESis

C, ={s,sl,sl*,...sl""'},

where ¢, is the least positive integer with sI"~' =s (mod
n). Each cyclotomiccoset is associated with an irreducible
polynomial in the semi simple ring represented by

Flx]
<x"-1>

and hence is also associated with a primitive idempotent
in R, that generates a minimal ideal in R, equivalently a

n
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minimal cyclic code over F. The number of /- cyclotomic
class modulo n depends on ¢, the multiplicative order of /
modulo n, where 1<t<¢(n). Throughout the whole
discussion we will assume that F is the field of order g, the
group is cyclic and is generated by g.

3. Primitive idempotents in cyclic codes of length 27,
p"and 2p~

Arora and Batra [3] described the minimal quadratic
residue cyclic codes of length 2".

If g is of the form 8k+3, then {qi [0<i<2m? —1} , the set
of integers modulo 2" accounts for all the odd numbers of the
form8m+3or8m+1.

The 2n-1 primitive idempotents for the case g = 8k + 3 are
given by

e, =2—1n[1+ni(5i +C)+(C,+C, ., +5,1)},
i=1
e :L[z(u@ +C +..+C,_, +C,)-(C, +5*)J ,

n-1 21:—1
]

e = %[2{(1+q+3 +C,;+..+C,,+C,)-(C,, +C;

=L [2(14C 48 4.0 C, ) ~(G )

and for 1<i<n-2,

i+2 i+2

#

i

whereH::\/Ee GF(l)c F and [=char. F.

)}-e(c.
J+6(C-C))],

i+2 i+2

e = #[2{(1+q+3 +Cpy+..+C,, +C,)=(C,, +C,

) |
Q

The 2n primitive idempotents for the case g = 8k - 3 are given by

e, =2i[1+2(5 +5f)+5n},

e, =2in[(1+52 +C +.+C_ +C _ + _”)—(_1 + T)J ,

and for 1<i<n-1,

¢ :#[{(14’_6142 +C_‘i$+2 +"'+En)_( int _;;1 )}—9(5, _Ei):| ’

*
e.

i = 2n—i+1 i+2 i+2

where 8:=+-1€ GF(l)c F, and C. =2gs , C = Zg‘.

1
seC; seC;

[{(H Co+Cly +..4C,)—(Cy +Cr, )} +6(C —5)}

For 1<i<n. Arora and Batra [3, 6] described the primitive idempotents is given by ¢, = E_0 , M, =E, .

Forl<i<n, we have

¢ =(E+6G.), & =2(E~6G.), n.=2(Ei+6G). 1

6> = pif p=1(mod4),and > =—p ,if p=-1(mod4).

Fi=—
2pﬂ 1
zpn 1
If 2 is quadratic residue modulo p, then
— 1 — — — —
G = T[( Cpt +Capt )=(Cupt +Ca ) |

[(p —1){(621;' +Ezhp’ )—(EP’ +Ehp' )+...+(1+Ep” )} —{(Ezp"' -l-EzhpH )—(

i

= %(E* —6’5?) , where

[(p—l){(a,r +Cy )+(Ezp' +Cany )+...+(1+E,,~ )}—{(E,,H +Cpp )+(Ezp'4 + Capp )” ,

Cyt + Ehp"l )}:| .
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1

n—i+l1

—

2p [(EZ"H -Cp ) - (EZ/WH —Cjp )] .

If 2 is quadratic non-residue modulo p, then

Q

i

6,‘ = zpi_iﬂ |:(Ep"' +Ezhp"' )—(Eh,,"' -i-Ezp”l ):| ’
G =5 ] (Conr =Co )~ (Cor ~C) ]
For 1<i<n

L= —
> &,G=1,C,=
s€C
2hp

In 2010 Batra and Arora [7, 21] described an explicit
expression for 4(n-1) primitive idempotents in FG, the
semisimple group algebra of the cyclic group G of order 2" (n

> 3) over the finite field F of prime power order g, where ¢ is
quadratic residue modulo 2",
Then the primitive idempotents F'Cy» are given by

e, =Y, ,
Cim =

1
€hyn-1 = E[Yz -26° (G(l,z),l + G(3.4).1 ):| 5

1
€oyn-1= E[Yz +26° (Guays G ):| .
For1<i<n-2

1
:Z[ i+2 202(G(12),+1

€y, Ganin) —40(G oy + 92G(1.3)4i ):|
1

€y = 2 [qu +26° (Gyinn +Gapin) = 49(92G(2.4)4i +G) )J >
1 2 2

€y, = Z[ =207 (G101 + Ga.ayi) T40(Gp ), + 607Gy 5, )J
1

Cwi =7 2 [qu +26° (G 2y + G300 +40(0°G oy, + G5, )] >

where 8> =+/-1 and e GF ) ,l being the characteristic of F

(S(l).i

1

ForlSiSn—Z,1Sl,m£4andl¢m’G F

(Lmi =

For 1<i<n,

n-2 4 4
Y, =—— il H '{ ZS(/B)]J ( (D1 _S(Z).n—l) (l)n} Z
Jj=i+l g=1 B=1
1 2" -1
Y =—)> g
A

andforl<i<nand 1< <4, §

=Y ¢

seC B

(B

- S(m).i ) .

S(ﬂ)-i

J

Again Batra and Arora [7, 21] describe the 8(n - 2)
primitive idempotents in the semisimple group algebra of the
cyclic group G of order 2" (n > 4) over the finite field F' of

prime power order ¢, where g = 8k + 1 is a quadratic residue
modulo 2".
F(Cy has 8(n - 2) primitive idempotents given by

e, =Y, ,
e(*l)n = Yl ’

(l)u 1 =5 [Y 292(G(1 2),1 G(3.4).1)J’
e(*Z).n—l == [Y +26° (Gu .1 G(3.4),1):|’

#

(1),n—=2

1
e = Z[Y'* =20°(Gyy, + G 1)2) = 40(G 4, +0°Gy ) |
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#

1
o2 = Z[Yw +26° (Gin +Gia02) — 49(92G(244)41 +G3, )] )

.

1
€Epn-2 = 2 [Yw -26" (G2)2 +G34,2) +40(Gy y, + 02G(143)41 ):| )

.

1
Cayn-2 = Z |:Y3 +26° (G +G5.02) + 49(02G(2,4).1 +G5, ):| .

Forl1<i<n-3

1

€ = g[ i+3 -26° (G(1 e T (3.4),i+2) _40(G(2,4),i+1 (1 3), z+1) 8\/_(G(4 9. T G(3 i T 62G(2 o T 6°G,, (1 5),i :|
1 .

€y = §|: i3 T 260° (Gu 22 T (3.4).i+2) - 4€(€2G(2.4).i+1 (1,3),i+1 )+ 8\/_(G(2 6)i G(l 5),i 62G(4.8), (3 7. J
* 1

€ = g':sz -26° (Gu iz T (3 4), z+2) 4‘9(G(2 ain T (1 3),i+1 )+ 8‘/_(G(3 7). G(4 8).i 02G(1 s T 6°G (2 6).i :|
o 1 2 2 \/— 2 3

€ = §|:Yi+3 +26 (G(I.Z).i+2 + G(3.4).i+2) +46(6 G(2,4),i+1 (1 3), x+l) 8 (Gu s T G(z o T 0 G(% i T 0°G (4 8),i :|
1

€0 = g|:y;+3 -20° (Gu iz T (3,4),i+2)_46(G(2.4),i+1 (1 3)z+1)+8\/_(G(4 i T G(z 7). +HZG(2 6),i +6°G,, (1 5), :|
# l 2 2 \/_ * * 2~

€y = g':Ym +26 (G(l izt (3,4).i+2) —-46(6 G(2,4),i+1 +G(l,3),i+1)_ 8 g(G(Z.G),i +00(1.5).i +0 G(4.8): (3 7)1 :|
. 1 .

€. = §|:Yi+3 -20° (G(l.z),i+2 + G(3,4),i+2 )+ 40(G(2.4).i+1 + ‘92G(1.3),i+1 )— 8J5(G(3.7).i - G(4 i T 6°G (1 i) i (2 6),i :|
; 1 ) 2 \/_ * 3

€w)i = 3 |:Yz+3 +20 (G(I,Z),i+2 + G(3,4).i+2 )+46(0 G(2.4).i+1 + Gu.z).m )+8 g(G(l,S).i (2 o T &’ G(3 i T 0°G (4 8)1 :|

where 6° =+/—1 and e GF(l) Ibeing the characteristic of F and for1<i<n and 1< B<8, S(ﬁ)‘ Z g’

sec(m,

[
For 1<i<n-3,1<lm<8and [#m G([m),:F(Sm_i—S(m)_i).

s

+ G G(3,4),i = G(3.4),i + G(7.8),i °

(6,8),i ?

For 1<i<n-3, G,,;
For 1<i<n,

n-3 8 8
Yi =i+l [{ +[ Z ZS(*I?) /j ( (1),n=2 to +S:4).11—2)+(S:1)m—1 _S(*Z)-"—l) (l)n} ZS:I?)J} ’

:G(l 20

+G.,.

(5,6),i

Gs), = G,,.+G.

(5.7),i *

(L3)i Goui = Gaui

J=i+l B=1 p=1
1 2" -1
Y,=—>g'.
2" 5
4. Other possibilities [5] A.Sharma, G.K. Bakshi, V.C. Dumir, M. Raka, Cyclotomic
Although, a number of codes have been found yet many numbers and Rrimitive idempotents in the ring
problems exists for the primitive idempotents in the cyclic GF(q)[x]/(x" —1), Finite Fields Appl. 10 (2004) 653-673.

group algebra. One of the main problem is to find out the (6]
primitive idempotents for the cyclic group FG, G is cyclic
group of order m [m =2",p",2p" (n is any natural number)], and
F is Field of order g, where order of ¢ modulo m [m =2"p",2p"
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