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ABSTRACT 

This paper gives a brief survey of primitive idempotents in cyclic group algebras for different cases. The 

expressions for these idempotents are listed. Initially the structure for cyclic codes is given.  

 

1.  Introduction 

The theory of detecting and correcting the error was first 

introduced by Claude Shannon in 1948 in his paper 

“Mathematical Theory of Communication”. In his paper 

Shannon said that we can easily transmit any information by 

coding. There are number of special codes such as cyclic codes, 

Linear codes, Group codes, polynomial codes etc. Our interest in 

this paper is to study a very important class of codes called 

“Cyclic Codes”. 

In general while examine cyclic codes over finite field F 

most often the code words are presented in polynomial form. 

The correspondence between the n- vector   C = c0c1…cn-1 over 

F and the polynomial c(x) = c0 + c1x+…+cn-1x
n-1

 in F[x] of at 

most n-1 degree is one to one and onto. This allows us the 

latitude of the vector notation C and the polynomial notation 

c(x) inter changeably. Notice that if c(x) = c0 + c1x+…+ cn-1x
n-1

 

then xc(x) = cn-1x
n 

+ c0x + c1x
2
+…+ cn-2x

n-1
 represents the code 

word C cyclically shifted one to the right if x
n
 were set equal to 

1. Equivalently, as the cyclic code C is invariant under a cyclic 

shift implies that if c(x) is in C then so is xc(x) provided we 

multiply modulo x
n
-1. This fact allows us for studying cyclic 

codes in the residue class ring     

  

( )

1
n n

F x
R

x
=

< − >
.  

It is also easily seen that  

( )

1
n nn

F x
R FC

x
= ≅

< − >
 

Where FCn is the group algebra of the cyclic group Cn of 

order n over the field F. Under the correspondence of the vectors 

with polynomials as given above, cyclic codes are ideals in Rn 

and ideals in Rn 
are cyclic codes. Therefore, the study of cyclic 

code over the finite field F is equivalent to the study of the 

ideals in Rn or FCn, the group algebra of the cyclic group Cn of 

order n over the field F. It is well known that the study of ideals 

in Rn completely depend on factorization of  x
n
-1 over F. 

Interesting it is also well known fact x
n
-1 has no repeated 

irreducible factors if and only if g.c.d (n, char(F)) =1. As F[x] is 

principal ideal domain then so is Rn. Thus a cyclic code, being 

ideal in Rn, may have a variety of generating polynomial.  

Through out for our discussion of cyclic codes we make the 

basic assumption that char (F)- the characteristic of the field F 

does not divide n- the length of the cyclic codes. This 

assumption also implies that Rn is semi-simple and thus the 

Weddernburn structure theorem is applicable. The theory of 

cyclic codes with g.c.d (n, char(F)) ≠1 is discussed in [1-5; 8-20; 

22], but today these “repeated roots”  cyclic codes don’t seems 

to be of much interest. 

 

2.  Primitive idempotent 

Besides the generating polynomial, there are many other 

polynomials that can be used to generate a cyclic code. One such 

polynomial called an idempotent generator, can also be used to 

generate a cyclic code. As the ring Rn is semi-simple therefore 

each ideal in Rn contains a unique idempotent which also 

generates the ideal. This idempotent is called the generating 

idempotent of the corresponding cyclic code. The idempotent 

generating the minimal ideal (minimal code) in Rn is called a 

Primitive idempotent. 

 It is well known that the generating polynomial g(x) of 

the ideal in Rn is a factor of x
n
-1. Thus the study of ideal through 

the generating polynomial depends on the factorization of x
n
-1 

over the field F. But the factorization of x
n
-1 into its irreducible 

factors in itself is a very difficult problem. To overcome the 

problem of factorization, we deal with the idempotents that 

generates the ideals. These idempotents then help us to describe 

the cyclic codes completely. 

Let F = GF(l) be a finite field of order l and n be any 

integer such that char (F) does not divide n. 
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Consider the set   
S = {0, 1, 2, …, n-1}. 

For a, b ∈  S, say that a ~ b if a ≡ bl
i
 (mod n) for some 

integer i ≥ 0. This is an equivalence relation on set S. The 

equivalence classes of this relation are called l- cyclotomic 

class modulo n. The l-cyclotomiccoset modulo n containing 

s∈S is  
12{ , , ,..., }st

s
C s sl sl sl

−= , 

where ts is the least positive integer with 
1stsl s

− ≡  (mod 

n). Each cyclotomiccoset is associated with an irreducible 

polynomial in the semi simple ring represented by  

[ ]

1
n n

F x
R

x
=

< − >
  

and hence is also associated with a primitive idempotent 

in Rn that generates a minimal ideal in Rn equivalently a 

minimal cyclic code over F. The number of l- cyclotomic 

class modulo n depends on t, the multiplicative order of l 

modulo n, where 1 ( )t n≤ ≤ φ . Throughout the whole 

discussion we will assume that F is the field of order q, the 

group is cyclic and is generated by g. 

 

3.  Primitive idempotents in cyclic codes of length 2n, 

pn and 2pn  

Arora and Batra [3]  described the minimal quadratic 

residue cyclic codes of length 2
n
. 

If q is of the form 8k+3, then { }2| 0 2 1i nq i −≤ ≤ − , the set 

of integers modulo 2
n
 accounts for all the odd numbers of the 

form 8m + 3 or 8m + 1 . 

The 2n-1 primitive idempotents for the case q = 8k + 3 are 

given by 

 

( ) ( )
2

*

0 0 1

1

1
1

2

n

i i n nn
i

e C C C C C
−

−
=

 
= + + + + + 

 
∑ , 

( ) ( )* *

1 3 3 1 2 21

1
2 1 ...

2
n n nn

e C C C C C C− −−
 = + + + + + − +  , 

( ) ( )* *

2 2 1 1 1

1
2 1 ...

2
n n nn

e C C C C C C−
 = + + + + + − +  , 

and for 1 2i n≤ ≤ − , 

( ) ( ){ } ( )* * *

3 3 1 2 21

1
2 1 ...

2
i i i n n i i i in i

e C C C C C C C C+ + − + +− +
 = + + + + + − + − −
 

θ , 

( ) ( ){ } ( )* * * *

3 3 1 2 21

1
2 1 ... ,

2
i i i n n i i i in i

e C C C C C C C C+ + − + +− +
 = + + + + + − + + −
 

θ  

where : 2 ( )GF l F= − ∈ ⊆θ  and l = char. F. 

The 2n primitive idempotents for the case q = 8k - 3 are given by 

( )
1

*

0

1

1
1

2

n

i i nn
i

e C C C
−

=

 
= + + + 

 
∑ , 

( ) ( )* * *

2 2 1 1 1 1

1
1 ...

2
n n n nn

e C C C C C C C− −
 = + + + + + + − +  , 

and for 1 1i n≤ ≤ − , 

( ) ( ){ } ( )* * *

2 2 1 11

1
1 ...

2
i i i n i i i in i

e C C C C C C C+ + + +− +
 = + + + + − + − −
 

θ , 

( ) ( ){ } ( )* * * *

2 2 1 11

1
1 ... ,

2
i i i n i i i in i

e C C C C C C C+ + + +− +
 = + + + + − + + −
 

θ  

where : 1 ( )GF l F= − ∈ ⊆θ , and 
i

s

i

s C

C g
∈

= ∑ , 
*

*

i

s

i

s C

C g
∈

= ∑ . 

For 1 i n≤ ≤ . Arora and Batra [3, 6] described the primitive idempotents is given by 
0 0

e E= , *

0 0E=η . 

For1 i n≤ ≤ , we have 

( )1

2
i iie E G= +θ , ( )* 1

2
i iie E G= −θ , ( )*

*1

2
ii iE G= +η θ , ( )*

* *1

2
ii iE G= −η θ , where 

2
p=θ if 1(mod 4)p ≡ , and 2

p= −θ , if 1(mod 4)p ≡ − . 

( ) ( ) ( ) ( ){ } ( ) ( ){ }1 1 1 12 2 2 2
1

1
1 ... 1

2
i i i i n i i i ii p hp p hp p p hp p hp

n i
E p C C C C C C C C C

p
− − − −

− +
 = − + + + + + + − + + +  

, 

( ) ( ) ( ) ( ){ } ( ) ( ){ }1 1 1 1

*

2 2 2 2
1

1
1 ... 1

2
i i i i n i i i ii p hp p hp p p hp p hp

n i
E p C C C C C C C C C

p
− − − −

− +
 = − + − + + + + − + − +  

. 

If 2 is quadratic residue modulo p, then 

( ) ( )1 1 1 12 2
1

1

2
i i i ii p p hp hp

n i
G C C C C

p
− − − −

− +
 = + − +
 

, 
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( ) ( )1 1 1 1

*

2 2
1

1

2
i i i ii p p hp hp

n i
G C C C C

p
− − − −

− +
 = − − −
 

. 

If 2 is quadratic non-residue modulo p, then 

( ) ( )1 1 1 12 2
1

1

2
i i i ii p hp hp p

n i
G C C C C

p
− − − −

− +
 = + − +
 

, 

( ) ( )1 1 1 1

*

2 2
1

1

2
i i i ii hp p p hp

n i
G C C C C

p
− − − −

− +
 = − − −
 

. 

For 1 i n≤ ≤  

1

1

i

ip

s

p
s C

C g−

−∈

= ∑ , 1

1

i

ihp

s

hp
s C

C g−

−∈

= ∑ , 1

12

2 i

ip

s

p
s C

C g−

−∈

= ∑ , 1

12

2 i

ihp

s

hp
s C

C g−

−∈

= ∑ , 
0 1C = , 

n

n

p

p
C g= .

 
 

In 2010 Batra and Arora [7, 21] described an explicit 

expression for 4(n-1) primitive idempotents in FG, the 

semisimple group algebra of the cyclic group G of order 2
n
 (n 

≥ 3) over the finite field F of prime power order q, where q is 

quadratic residue modulo 2
n
.   

Then the primitive idempotents 2
nFC  are given by 

 

0 0e Y=  ,    

(1), 1n
e Y= , 

2

(1), 1 2 (1,2),1 (3,4),1

1
2 ( ) ,

2
ne Y G G−

 = − + θ
 

2

(2), 1 2 (1,2),1 (3,4),1

1
2 ( )

2
ne Y G G−

 = + + θ . 

For1 2i n≤ ≤ −  

2 2

(1), 2 (1,2), 1 (3,4), 1 (2,4), (1,3),

1
2 ( ) 4 ( )

4
i i i i i ie Y G G G G+ + +

 = − + − + θ θ θ , 

2 2

(2), 2 (1,2), 1 (3,4), 1 (2,4), (1,3),

1
2 ( ) 4 ( )

4
i i i i i ie Y G G G G+ + +

 = + + − + θ θ θ , 

2 2

(3), 2 (1,2), 1 (3,4), 1 (2,4), (1,3),

1
2 ( ) 4 ( )

4
i i i i i ie Y G G G G+ + +

 = − + + + θ θ θ , 

2 2

(4), 2 (1,2), 1 (3,4), 1 (2,4), (1,3),

1
2 ( ) 4 ( )

4
i i i i i ie Y G G G G+ + +

 = + + + + θ θ θ , 

where 2 1= −θ  and ( )GF l∈θ ,l being the characteristic of F and for1 i n≤ ≤ and 1 4≤ ≤β , 
( ),

( ),

i

s

i

s C

S g
∈

= ∑
β

β
. 

For 1 2i n≤ ≤ − , 1 , 4l m≤ ≤ and l m≠ , ( )( , ), ( ), ( ),1

1

2
l m i l i m in i

G S S
− +

= − . 

For 1 i n≤ ≤ ,  

( )
2 4 4

( ), (1), 1 (2), 1 (1), ( ),1
1 1 1

1
1

2

n

i j n n n in i
j i

Y S S S S S
−

− −− +
= + = =

    
= + + − + −    

     
∑ ∑ ∑β β

β β

, 

2 1

0

0

1

2

n

t

n
t

Y g
−

=

= ∑ . 

 

Again Batra and Arora [7, 21] describe the 8(n - 2) 

primitive idempotents in the semisimple group algebra of the 

cyclic group G of order  2n (n ≥ 4) over the finite field F of 

prime power order q, where q = 8k + 1 is a quadratic residue 

modulo 2n.    

2
nFC has 8(n - 2) primitive idempotents  given by 

 
*

0 0e Y=  ,    

*

(1), 1n
e Y= , 

* 2

(1), 1 2 (1,2),1 (3,4),1

1
2 ( ) ,

2
ne Y G G−

 = − + θ  

* 2

(2), 1 2 (1,2),1 (3,4),1

1
2 ( ) ,

2
ne Y G G−

 = + + θ  

* 2 2

(1), 2 3 (1,2),2 (3,4),2 (2,4),1 (1,3),1

1
2 ( ) 4 ( ) ,

4
ne Y G G G G−

 = − + − + θ θ θ  
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* 2 2

(2), 2 3 (1,2),2 (3,4),2 (2,4),1 (1,3),1

1
2 ( ) 4 ( ) ,

4
ne Y G G G G−

 = + + − + θ θ θ  

* 2 2

(3), 2 3 (1,2),2 (3,4),2 (2,4),1 (1,3),1

1
2 ( ) 4 ( ) ,

4
ne Y G G G G−

 = − + + + θ θ θ  

* 2 2

(4), 2 3 (1,2),2 (3,4),2 (2,4),1 (1,3),1

1
2 ( ) 4 ( )

4
ne Y G G G G−

 = + + + + θ θ θ . 

 

For1 3i n≤ ≤ −  

* 2 2 * * 2 * 3 *

(1), 3 (1,2), 2 (3,4), 2 (2,4), 1 (1,3), 1 (4,8), (3,7), (2,6), (1,5),

1
2 ( ) 4 ( ) 8 ( ) ,

8
i i i i i i i i i ie Y G G G G G G G G+ + + + +

 = − + − + − + + + θ θ θ θ θ θ θ  

* 2 2 * * 2 * 3 *

(2), 3 (1,2), 2 (3,4), 2 (2,4), 1 (1,3), 1 (2,6), (1,5), (4,8), (3,7),

1
2 ( ) 4 ( ) 8 ( )

8
i i i i i i i i i ie Y G G G G G G G G+ + + + +

 = + + − + + − − + θ θ θ θ θ θ θ , 

* 2 2 * * 2 * 3 *

(3), 3 (1,2), 2 (3,4), 2 (2,4), 1 (1,3), 1 (3,7), (4,8), (1,5), (2,6),

1
2 ( ) 4 ( ) 8 ( )

8
i i i i i i i i i i

e Y G G G G G G G G+ + + + +
 = − + − + + − − + θ θ θ θ θ θ θ , 

* 2 2 * * 2 * 3 *

(4), 3 (1,2), 2 (3,4), 2 (2,4), 1 (1,3), 1 (1,5), (2,6), (3,7), (4,8),

1
2 ( ) 4 ( ) 8 ( )

8
i i i i i i i i i ie Y G G G G G G G G+ + + + +

 = + + + + − + + + θ θ θ θ θ θ θ , 

* 2 2 * * 2 * 3 *

(5), 3 (1,2), 2 (3,4), 2 (2,4), 1 (1,3), 1 (4,8), (3,7), (2,6), (1,5),

1
2 ( ) 4 ( ) 8 ( )

8
i i i i i i i i i ie Y G G G G G G G G+ + + + +

 = − + − + + + + + θ θ θ θ θ θ θ , 

* 2 2 * * 2 * 3 *

(6), 3 (1,2), 2 (3,4), 2 (2,4), 1 (1,3), 1 (2,6), (1,5), (4,8), (3,7),

1
2 ( ) 4 ( ) 8 ( )

8
i i i i i i i i i ie Y G G G G G G G G+ + + + +

 = + + − + − + + + θ θ θ θ θ θ θ , 

* 2 2 * * 2 * 3 *

(7), 3 (1,2), 2 (3,4), 2 (2,4), 1 (1,3), 1 (3,7), (4,8), (1,5), (2,6),

1
2 ( ) 4 ( ) 8 ( )

8
i i i i i i i i i ie Y G G G G G G G G+ + + + +

 = − + + + − − + + θ θ θ θ θ θ θ , 

* 2 2 * * 2 * 3 *

(8), 3 (1,2), 2 (3,4), 2 (2,4), 1 (1,3), 1 (1,5), (2,6), (3,7), (4,8),

1
2 ( ) 4 ( ) 8 ( )

8
i i i i i i i i i ie Y G G G G G G G G+ + + + +

 = + + + + + + + + θ θ θ θ θ θ θ , 

where  2 1= −θ and ( )GF l∈θ ,l being the characteristic of F and for1 i n≤ ≤  and 1 8≤ ≤β , 
*
( ),

*

( ),

i

s

i

s C

S g
∈

= ∑
β

β . 

For 1 3i n≤ ≤ − , 1 , 8l m≤ ≤ and l m≠ , ( )* * *

( , ), ( ), ( ),1

1

2
l m i l i m in i

G S S
− +

= − . 

For 1 3i n≤ ≤ − , 
* *

(1,2), (1,2), (5,6),i i i
G G G= + , * *

(1,3), (1,3), (5,7),i i i
G G G= + , * *

(2,4), (2,4), (6,8),i i i
G G G= + , * *

(3,4), (3,4), (7,8),i i i
G G G= + . 

For 1 i n≤ ≤ , 

( ) ( )
3 8 8

* * * * * * *

( ), (1), 2 (4), 2 (1), 1 (2), 1 (1), ( ),1
1 1 1

1
1 ...

2

n

i j n n n n n in i
j i

Y S S S S S S S
−

− − − −− +
= + = =

    
= + + + + + − + −    

     
∑ ∑ ∑β β

β β

, 

2 1

0

0

1

2

n

t

n
t

Y g
−

=

= ∑ . 

 

4.  Other possibilities 

Although, a number of codes have been found yet many 

problems exists for the primitive idempotents in the cyclic 

group algebra. One of the main problem is to find out the 

primitive idempotents for the cyclic group FG, G is cyclic 

group of order m [m = 2
n
,p

n
,2p

n
 (n is any natural number)], and 

F is Field of order q, where order of q modulo m [m = 2
n
,p

n
,2p

n
 

(n is any natural number)] respectively is any number t. 
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