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ABSTRACT 

Using a regularly modulated dispersion fibre coupler with cubic quintic nonlinearity and coupling 

constant dispersion, we conducted a thorough examination into soliton switching. The results are 

presented in this paper. Comprehensive research has been done on the effects of coupling coefficient 

dispersion, quintic nonlinearity, and periodically modulated dispersion on switching dynamics. In the 

setting of quintic nonlinearity and periodically modulated dispersion, the expressions for transmission 

coefficient, cross talk, and extinction ratio have been developed and analysed. It has been discovered 

that, except from low values, quintic nonlinearity negatively affects soliton switching. Numerical 

analysis has confirmed our analytic findings. 

 
1.  Introduction 

Due to their technological applications to numerous 

optical instrumentations, including power splitting, 

wavelength division multiplexing-demultiplexing, polarisation 

splitting, fibre optic sensing, and others, nonlinear directional 

couplers have been the focus of research for more than two 

decades. While many theoretical and experimental studies 

have been conducted over the course of this lengthy time, 

several gadgets have also been made using these technologies 

and put to use in the commercial sector. 

Soliton switching in nonlinear directional couplers 

(NLDC) has been thoroughly researched and reported on 

among the many uses. Research on soliton switching 

behaviour on NLDC in Kerr media and later in non-Kerr 

media was sparked by Jenson's groundbreaking works [1]. 

NLDC is now viewed as one of the fundamental components 

of an all-optical communication system and signal processing.  

Two forms of pulse switching are possible in NLDC. One 

type of switching is power controlled, in which the output 

depends on the input power in a single channel. The first 

example of such power-dependent switching was found in 

multiple quantum wells made of GaAs and AlGaAs (MQW). 

The switching dynamics of the other switching type, known as 

phase controlled switching, are controlled by the phase 

difference between a weak and a strong input signal. This 

switching type may be thought of as an appealing substitute 

for power controlled switching. The soliton production is also 

conceivable for more realistic cases that contain two 

orthogonal polarizations in the coupler cores, even though 

most NLDC investigations treat each core as a monomode 

waveguide.  

Without a thorough exploration of soliton interactions as 

well as stability analysis, which draws many scholars, the 

study of soliton switching could not take on its final form. 

Remember that NLDC is made up of single mode fibres that 

are truly bimodal in nature and may support two eigen modes, 

namely symmetrical mode and anti-symmetrical mode. As a 

result, there is intermodal dispersion (IMD). The switching 

dynamics of NLDC can be dramatically altered by the IMD 

between these two eigen modes [2]. This IMD can be 

represented mathematically by coupling constant dispersion in 

linked NLSE. Both numerically [3] and semi-analytically [4] 

soliton switching with coupling constant dispersion has been 

explored. In practise, an NLDC's component fibres may 

exhibit random fluctuation along their transverse dimension, 

which results in birefringence and, as a result, a periodically 

modulated dispersion (PMD). Additionally, this transverse 

fluctuation has the power to modify the overall switching 

dynamics by affecting the nonlinear dispersion along the 

length of the fibre.  

Both analytical and numerical studies have been done on 

the performance of NLDC fibre couplers with periodically 

regulated dispersion [5-7]. To the best of our knowledge, no 

work has been reported on the combined effect of these two, 

which promise more intriguing switching dynamics, despite 

the fact that NLDC has been explored in the context of IMD 

and periodically modulated dispersion. Additionally, higher 

order nonlinearity enters the picture when studying NLDC 

with a high intensity radiation such as a laser, making Kerr 

nonlinearity insufficient to explain the system. Soliton 

switching in a periodically modulated dispersion fibre coupler 

with cubic quintic nonlinearity and coupling constant 

dispersion has been the subject of a thorough analysis, the 

findings of which are presented in this paper. The structure of 

this article is as follows. We mathematically described the 
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system in part 2. The findings and discussion are presented in 

Section 3. In section 4, a concluding statement has been 

provided. 

 

2.  Mathematical formulation 

We take into account the propagation of brief pulses 

through a dual core NLDC with cubic quintic nonlinearity. 

Dispersion fibre that is periodically modulated is used to make 

the coupler (PMDF). Linear coupling is produced by the 

evanescent-field coupling between the cores, whereas 

nonlinear coupling is produced by cross phase modulation 

(XPM). The last one can be disregarded because there is only a 

minimal amount of overlap between the elemental modes 

corresponding to each core. The following pair of coupled 

nonlinear Schrödinger equations (CNLSE), where the coupling 

is mediated by a linear coupling term, can be used to represent 

this system mathematically [4, 5]. 
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where, u , v are the normalized slowly varying envelope 

amplitude in the input core (core- 1) and its neighbouring core 

(core-2) respectively, ξ is the normalized distance along the 

fiber length, t is the normalized time, δ is the first order 

coupling constant dispersion coefficient, s is the coefficient of 

quintic nonlinearity which takes ‘-ve’ sign in our present 

discussion as we are interested in anomalous dispersion regime 

only, k0 is the normalized zeroth order coupling coefficient 

which is the measure of the strength of interaction between the 

fiber cores. k0 depends on fiber characteristics, separation 

between the cores and operational frequency. P(ξ )is the group 

velocity dispersion profile and ω is the frequency of 

modulation in the PMDF.  

We use the variational analysis method to solve the 

aforementioned CNLSE in order to investigate the switching 

dynamics. The system's Lagrangian density is given by 
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Assumed are the following Ansatz that, in cores 1 and 2, 

corresponds to the bright soliton solution.  
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where, A(ξ)  is the amplitude of the pulse envelope, θ (ξ ) 

is the coupling angle, τ (ξ ) is the position of the pulse centre, 

a(ξ) is the pulse width, b(ξ) represents chirp and φ(ξ )is the 

relative phase difference between the pulses. The averaged 

Lagrangian Lav of the system is obtained by following formula:  
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Substituting Eqs. (5) and (6) in (4), we get  
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Variations of the average Lagrangian with respect to 

different parameters that characterize the system give rise to 

the following set of evolution equations. 
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Eq. (9a) can be written as: 
2

02 A a E=  (constant). E0 may 

be identified as the input soliton energy. The evolution of the 

pulse as well as soliton switching in the coupler are then 

thoroughly analysed using the aforementioned equations. The 

fractional energy at the output end of the cores is a crucial 

component of the switching function in NLDC.  

One can determine the fractional energy at the output end 

of core 1 by using Eqs. (5) and (6) as follows: 
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3.  Results and discussion 

It will be helpful to highlight the properties of the 1st order 

coupling constant dispersion coefficient (δ) before analysing 

the switching characteristics. The value of δ can be calculated 

by the method employed by Ramos et al. [3]. Here, we redraw 

the variation characteristic of δ with pulse width in Figure 1, 

which is more informative as we take k0 as a parameter. 
 

 
Figure 1. Variation of first order coupling coefficient dispersion 

coefficient δ with pulse width taking k0 as a parameter. 

 
 

 
Figure 2. Evolution of u and v along the propagation length of the 

NLDC. k0 = 0.3, δ = -0.1456, s = -0.01. (a) with PMD effect, (b) 

without PMD effect. 

  

 

 
Figure 3. Variation of the fractional energy at the output end of core 1 

(i.e. E1f) with input soliton energy normalized by k0. k0 = 0.3, δ = -

0.1656, s = -0.01. Left panel with PMD effect, Right panel without 

PMD. 

  

 
Figure 4. Variation of E1f with input soliton energy E0. 

  

 
Figure 5. Variation of critical energy Ec with k0 in presence of PMD. 
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Figure 1 demonstrates that although δ becomes the same 

for all values of k0 at comparably larger pulse widths (~ 1 ps), 

k0 has a considerable impact on δ for smaller pulse widths. For 

more research, we gather the values of δ from Figure 1. Eqs. 

(5) and (6) have been solved using direct numerical technique 

employing split step Fourier transformation in order to depict 

the switching profile in the NLDC. Figure 2's upper panel 

depicts the pulse propagation profile in cores 1 and 2 whereas 

the lower panel depicts the same minus the PMD impact. Here, 

seven half beats of the coupler's length of propagation are 

covered. Figure clearly shows that the PMD effect reduces the 

pulse intensity in either core. The fractional energy at the 

output end of core 1 depends on input soliton energy E0 , δ , k0 

and PMD effect. 

To recognize a comparison study, Figure 3a depicts the 

evolution of E1f with normalised input soliton energy when the 

PMD effect is present, while Figure 3b shows the same 

evolution without the PMD effect. The quintic nonlinearity has 

a relatively negative impact on switching characteristics, as 

seen by both figures. Of course, for s = −0.01, we observe a 

very distinct switching in both the PMD- and non-PMD-cases. 

We now investigate how coupling coefficient affects 

switching. Figure 4 describes the variation of E1f with 

normalized input soliton energy considering k0 as a parameter. 

Figure shows that the critical energy for switching Ec 

grows as k0 increases. Figure 5 illustrates this for various 

quintic nonlinearity values. 

 

4.  Conclusions 

The soliton switching in an NLDC with cubic quintic 

nonlinearity and coupling constant dispersion, which results 

from the intermodal dispersion between symmetric and 

antisymmetric modes of the coupler, is discussed in this study. 

Comprehensive research has been done on the effects of 

coupling coefficient dispersion, quintic nonlinearity, and 

periodically modulated dispersion on switching dynamics. In 

the setting of quintic nonlinearity and periodically modulated 

dispersion, the expressions for transmission coefficient, cross 

talk, and extinction ratio have been developed and analysed. It 

has been discovered that, except from low values, quintic 

nonlinearity negatively affects soliton switching. Numerical 

analysis has confirmed our analytic findings. 
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