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ABSTRACT 

In this paper, a new method for determining a system's entropy is provided that yields a general form 

that is linearly dependent on component entropies, similar to extensive Renyi entropy but non-

extensive like Tsallis entropy. This entropy has a conceptually new but straightforward origin and is 

easily defined mathematically by a fairly straightforward statement employing a derivative. It results in 

a probability distribution function that involves the Lambert function that is slightly more complex than 

the Shannon or Boltzmann forms but is still highly tractable mathematically and has never before been 

seen in this context. The author numerically compared it to the Tsallis and Shannon entropies. 

 
1.  Introduction 

Entropy is a measurement of the disorder or randomness 

of a system with many constituents. It reaches its maximum 

value when a system can randomly exist in a number of states 

with equal probability, and it falls to zero at the lowest level 

when the system is in a single state with complete knowledge 

of its description. In addition to this characteristic that all 

definitions of entropy at the extremes have, differences are 

conceivable in the way the functional form in the middle is 

particularised [1]. For states with various energy or other 

conserved characteristics, they result in varied shapes of the 

probability distribution function. While some can be specified 

to be not so, others appear to be extensive, where the entropy 

of a combination of systems is just the sum of the entropies of 

the systems, as in the canonical instance of the Shannon form. 

Since Renyi [2] entropy differs from Shannon entropy while 

still being extensive, the extensibility attribute of the Shannon 

form is not unique. 

In recent years, Tsallis entropy [3] has received a lot of 

attention due to its conceptual and theoretical novelty as well 

as the fact that it can be demonstrated in specific physical cases 

[5–11] to be the relevant form where non-extensivity is 

anticipated due to the interaction of the combined subsystems. 

It reduces to the normal Shannon entropy in the appropriate 

limiting instance, demonstrating the concept's consistency. 

However, the author will bring entropy in this study from 

a fresh angle that will also resemble the typical form in the 

limit. We'll first outline the justification for this new definition 

before quickly contrasting it with the existing forms. The 

probability distribution for this entropy, which the author will 

henceforth, refer to as s-entropy, will then be determined. This 

entropy will be tied to the idea of rescaling the phase space. 

The determination of the free energy is crucial to the 

evolution of a system's statistical mechanics since it is 

connected to the normalisation of the probability distribution 

function, which in turn regulates how all the ensemble's 

macroscopic features behave. Determining the free energy's 

value in a straightforward physical scenario in terms of 

temperature for Tsallis and the newer version will therefore 

involve first establishing a general prescription to obtain the 

free energy. The specific heat will then be obtained in both 

scenarios using it, and its variation with temperature will be 

examined.  
 

2.  Entropy 

Consider a register with just one letter in it. Let pi 

represent the set of probabilities for each of the N possible 

combinations of the letter Ai in this place. Although it is easily 

extended to states i of a single state of an ensemble where the 

individual systems can be in any N states with probability pi, 

the author is employing the terminology of information theory 

in this context, as used, for example, in the Shannon Coding 

Theorem. 

Let's now explore a slight resizing of the (single cell) 

register to make room for the letters q = 1 + ∆q. The equivalent 

AND operation now determines the likelihood q
ip  that the 

letter pi will fill the entire new phase space, and as a result, the 

likelihood that any of the pure letters Ai will fill the newly 

deformed cell is given by 

 

( ) q
i

i

N q p=∑ .                                                                    (1) 

 

This would result in a decrease from the original total 

probability of unity for q = 1 for q > 1. It is clear that the 

deficit, which the author indicate by 

 

( ) 1 q
i

i

M q p= −∑ ,                                                               (2) 
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reflects the overall likelihood that the mixed cell contains 

a mixture of Ai and some other Aj, as the probability that the 

cell contains one or more letters overall (fractional included) 

must be one. As a result, the mixing probability M(q) truly 

represents the degree of disorder that is brought about by 

changing the cell scale from unity to 1 + ∆q. 

In a similar vein to establishing the fractal (Hausdorff) 

dimensions of dynamical attractors [12, 13] and in complex 

systems, fractional values of cell counts are introduced. Studies 

of diffusion [14] and percolation in complicated systems with 

fluids that effectively have fractional dimensions have been 

conducted. In these cases, the specific geometric limitations 

cause the associated space's dimension to change to a fractional 

dimension that is illogical on the surface. Huffmann coding, 

where the ideal alphabet size may formally be a fraction but 

may be modified for pragmatic reasons to the nearest higher 

integer, is one of the coding theories for the best transmission 

of information [15]. In order to accommodate a certain quantity 

of information, one can therefore consider a fractional size of 

the register or, alternatively, an integral number of cells in the 

register with fractionalsized cells. Therefore, our use of 

fractional cell sizes may be a classical precursor of the 

inevitable departure from stringent Shannon-type concepts. In 

quantum computing contexts, probabilistic optimization in 

place of the deterministic parameterization of classical 

Shannon information theory becomes inevitable. 

Kaniadakis has also researched an intriguing alternate 

approach to the introduction of a parameter-dependent entropy 

and probability distribution [16, 17]. 

Let us define the entropy from the information content of 

the register by for an alphabet with m letters. 

 
( ) ( ( ) ( ))S q q M q q M q

m m
∆ +∆ −=                                                    (3) 

 

As a result, the entropy shows that a tiny change in the 

register's cell size actually results in a change in the mixing 

likelihood. This results in: 

 

( )
( )

dM q
S q

dq
= .                                                                  (4) 

 

Otherwise put, 

 

( ) logq
i i

i

S q p p=∑ .                                                            (5) 

 

The Tsallis form and this differential form are similar, but 

they are not the same. 

 

(1 )
( )

1

q
i

T
i

p
S q

q

−
= −

−
∑ ,                                                         (6) 

 

There appears to be a singularity in Eq. (6) when q = 1, 

which is the Shannon limit. If one expresses entropy as the 

expectation value of the (generalised or ordinary) logarithm, 

the distinction between the Tsallis expression and ours 

becomes more apparent: 

 

( ) log ( )T qS q p= − ,                                                          (7) 

where the generalized q-logarithm may be expressed as: 

 
11

log ( )
1

q
i

q i

p
p

q

−−
=

−
.                                                            (8) 

 

In Ref. [18, 19], a type of entropy that like ours was 

presented: 

 

logq
i i

i
AD q

i
i

p p

S
p

= −
∑

∑
                                                           (9) 

 

This adds an additional denominator term to standardise 

the weights for log pi. 

From a different physical perspective, Wang [20] has also 

proposed a form that is comparable to our own and exploits the 

condition: 

 

1q
i

i

p =∑ .                                                                        (10) 

 

The definition of the expectation value using the 

straightforward probability distribution: 

 

i i
i

O p O=∑ .                                                                  (11) 

 

In the present example, the author maintains the standard 

logarithm while defining the expectation value with respect to 

the deformed probability corresponding to the extended cell. 

 

( ) log( )s q
S q p= −                                                            (12) 

 

where 

 
q
i iq

i

O p O=∑ .                                                               (13) 

 

Due to the denominator sum in the Aczel-Daroczy form, 

the straightforwardness of the relationship between the weights 

and log pi is lost. If one just redefine the probability in the 

Wang form as: 

 
q

i ip p=ɶ ,                                                                          (14) 

 

then one obtains 

 

1
logWS p

q
= − ɶ                                                                (15) 

 

which is the standard Shannon form shrunk down. The 

Wang form is therefore broad, in contrast to our form, where 

the deformed probabilities do not add up to unity because one 

permits information leaks. 

Tsallis entropy corresponds with Shannon entropy in the 

limit q → 1, and as, one also obtain the normal Shannon 

entropy and q
i ip p→ . This is because the function logq 

approaches the normal logarithm in this limit. 

What constitutes the Renyi entropy is: 
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log

( )
1

q
i

i
R

p

S q
q

=
−

∑
.                                                           (16) 

 

This entropy is comprehensive, meaning that it is simply 

additive for two subsystems for any value of q, much as 

Shannon entropy. One needs a slightly different expression of 

the extensibility axiom to obtain Shannon entropy uniquely: 

 

1 2 1 1 2( )i
i

S S p S i+ = +∑ ,                                                      (17) 

 

where, given that subsystem 1 is in state I, S2(i) is the 

entropy of subsystem 2. 

 

3.  Probability distribution for the new entropy 

By maximising entropy under limitations, the pi can be 

derived in terms of the energy of the states or perhaps also other 

criteria. 

 

1 0i
i

p − =∑                                                                       (18) 

 

and 

 

0i i
i

p E U− −∑ .                                                               (19)  

 

Let us now optimize with respect to the pi, the constrained 

function given by 

 

1i i i
i i

L S p E U p
   

= + β − + α −   
   
∑ ∑ ,                              (20) 

 

In Eq. (20), α and β stand for the Lagrange multipliers 

corresponding to the two constraints. One obtains 

 

( 1) ( 1)(log 1) 1 0
1

q q
i i i

q
p p p

q

− − − −− − + + γ =
−

,                         (21) 

 

where the author has used for brevity γ = α + βEi. 

The author takes into consideration the simpler form to 

relate the terms with pi to the Lambert function. 

 

log 1c y dy− + =                                                                (22) 

 

that transforms into 

 

( / ) 1/dy c cd d
ye e

c c

−− = −                                                       (23) 

 

which results 

 

1/ cc d
y W e

d c

 
= − − 

 
                                                         (24) 

 

and using our parameters, one should have pi, 

 

1

1( )

( )( 1)

q

i

i

qW z
p

E q

− −
=  

α + β − 
,                                                (25) 

 

in which 

 
1

1
( )

q

q
i

q
z e E

q

−
−

= − α + β                                                    (26) 

 

where the Lambert function as described by [21] is W(z). 

 
( )( ) W z

z W z e= .                                                                 (27) 

 

In the Shannon situation, where the author obtain the 

Gibbs formula for pi, the parameters α and β derived from the 

Lagrange's multipliers for the two constraints are related to the 

overall normalisation and to the relative scale of energy, i.e., to 

temperature (1/(kT)). In the Tsallis instance, pi is represented 

by the well-known value as follows: 

 
1

1[ ( 1) ] q
i ip q E −= α + β −                                                      (28) 

 

which, for q → 1, is easily observed to decrease to 

Shannon form. 

It can be demonstrated via mathematics that this form 

simplifies to the Shannon form for q → 1. 

By expanding, it is simple to see that Tsallis entropy is 

non-extensive. 

 

1 2 2

(1 )

(1 )

q q
i j i jT

ij

p p p p
S

q
+

−
= −

−
∑  

        1 2 1 2(1 )T T T TS S q S S= + + − .                                          (29) 

 

One should have a simple additive relation for Renyi 

entropy 

 

1 2 1 2
R R RS S S+ = + .                                                                (30) 

 

Considering the new entropy, 

 

1 2 1 2 2 1 1 2( ) ( )S S S S SS S S M q S M q S+ = + − − ,                              (31) 

 

where Ma refers to the subsystem a's (Eq. (2)) specified 

mixing probability of states. 

 

4.  Probability, Lambert function properties and 

constraints for the entropy 

There are an infinite number of Riemann sheets divided by 

cuts in the transcendental equation that describes the Lambert 

function, and these cuts are connected to the cut of the log 

function from −∞ to 0. A subscript n separates the several 

branch values for the same z, with n = 0 being the principal 

value and W0(z) being real along the real z-axis from −1/e to ∞ 

(Figure 1). 

One also gets another branch conventionally labelled 

W−1(z), which too gives real values for real z in the domain 

−1/e < z < 0, going down from −1 at z = −1/e to −∞ at z = 0. 
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One obtains four different regimes for the parameters: 

(a) α + βEi > 0 and q > 1: A real positive pi requires from 

[Eq. (25) and (26)] (with ε ≡ q−1 and γi ≡ α + βEi ) that W(zi ) 

< 0, and hence 

 

−1/ε < zi < 0.                                                                   (32) 

 

One also needs all pi to be less than unity. Hence, one 

should have a cut-off value of Ei given by 

 

( )i i

q
W z E≥ α + β

ε
,                                                          (33) 

 

where zi is again dependent on Ei as given in Eq. (26) so 

that it is a transcendental equation. 

(b) α + βEi < 0 and q > 1: Here, reality of pi demands that 

W(zi ) > 0 so that initially zi need only be positive. But as ε < 0 

and is in the exponent, the condition pi < 1 gives as a lower 

cut-off of zi the value izɶ , given by 

 

( )
i

iW z
q

γ ε
=ɶ                                                                    (34) 

 

which means that the negative Ei have a highest possible 

value given by Eq. (34), which is again a transcendental 

equation in Ei. 

(c) α + βEi > 0 and q < 1: Reality of pi implies in this case 

W(zi ) > 0 so that zi > 0. The condition pi < 1 similarly gives the 

cut-off izɶ  defined by 

 

( )
i

iW z
q

ε γ
=ɶ .                                                                  (35) 

 

So, Ei has a maximum value given by this transcendental 

constraint. 

(d) α + βEi < 0 and q < 1: In this case, −1/e < zi < 0 

initially due to reality of pi and the constraint pi < 1 leads to as 

in the previous cases to cut-off izɶ  defined by 

 

( )
i

iW z
q

ε γ
=ɶ                                                                  (36) 

 

and one can solve for the cut-off Ei from the other 

parameters numerically in specific problems with given sets of 

parameters. 

The other branch of the Lambert function W−1(z) is also 

real and negative for −1/e < z < 0 with the values −1 to −∞, but 

is not acceptable as it does not give the limit W−1(z) → 0 as z 

→ 0, when q → 1, which is required to get the Shannon limit 

for q → 0. 

Since an exponential has no finite root, Shannon entropy 

may be determined for any arbitrary number of energy because 

the probability function is of the exponential Boltzmann type. 

The author finds that when our entropy is utilised, the spectrum 

of energy levels Ei may be restricted for finitely non-zero q – 1. 

The functional dependency also exhibits a power behaviour 

and has finite roots in the case of Tsallis entropy. 

 

 

5.  Numerical analysis of the results 

The author displays the change in the probability function 

for various E at various q values in Figure 2. 

One may observe that the Shannon form is less curved 

than the new probability density function (pdf). The Gibbs 

exponential distribution is substantially different in form and 

size at high energy values, dropping more quickly at larger 

values of q. Even a 10% deviation from the norm for q = 1 can 

significantly alter the pdf, which should be fairly simple to 

observe in experimental settings. The form is essentially linear 

when q = 1.3. 

One may compare Tsallis' pdf and the pdf for the new 

entropy for the identical values of q, 1.1 in the former and 1.3 

in the latter, in Figures 3 and 4. One may observe that the new 

entropy provides much stiffer probability curves for bigger q 

values, diverging significantly from the Tsallis' pdf. 

One may observe that, unlike Shannon's exponential form, 

which the author discussed in Section 4, the pdf for both the 

Tsallis form and our new form of entropy hit the axis at finite 

values of the energy, making the support of the probability 

finite. 

 

 

 
Figure 1. The W0(z) branch, which is real from z = 1/e to z = 0, is not 

shown since, as stated in the text, it is not appropriate for our entropy. 

W0(z) is real along the real axis from 1/e to ∞; the value of W0 varies 

from −1 to ∞. 

 

 

 
Figure 2. Comparison of the new entropy's PDF for q = 1, 1.1, 

1.2, and 1.3 values. The Gibbs exponential distribution, represented 

by the solid line for q = 1, has lines in the order of q. 
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Figure 3. Comparison of the new entropy presented here for q = 

1.1 and the Tsallis non-extensive entropy (solid line). 

 

 
Figure 4. Same as Fig. 3, but for a higher q = 1.3. 

 

6.  Conclusions 

One can see that the novel entropy proposed here, which is 

based on the straightforward idea of the quantity of state 

mixing freedom introduced per unit cell of phase space, results 

in a non-extensive form that is distinct from all other entropies 

currently under study. As a result, the pdf takes on a complex 

yet integrable shape that significantly deviates from Tsallis 

entropy. In a different way than Tsallis entropy, this entropy is 

also non-extensive, although as is to be expected, it too extends 

trivially in the limit q → 1. In contrast to the classical 

exponential form of the pdf, which has an infinite energy 

support, one should have the interesting deviation that our 

form, like that of Tsallis, leads to a finite energy support. As a 

result, in theory, values of the energy may be ruled out for 

ranges of parameters, such as temperature, that make the 

probability unphysical. 
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