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ABSTRACT 

The difference between two distribution functions is measured using cross-entropy. This work seeks to 

introduce the notion of cross-entropy for uncertain variables based on uncertain theory and investigate 

certain mathematical aspects of this notion in order to cope with the divergence of uncertain variables 

via uncertainty distributions. Additionally, several real-world examples are given to determine 

unknown cross-entropy. This work also suggests the minimum cross-entropy principle. The final step is 

to analyse generalised cross-entropy for uncertain variables. 

 
1.  Introduction 

To characterise non-deterministic processes, credibility 

theory, fuzzy set theory, rough set theory, and set theory were 

all introduced. Some non-deterministic events, such as "around 

100 km," and "large size," are expressed in common language, 

yet they are neither random nor fuzzy. As a subfield of 

mathematics built on the axioms of normalcy, self-duality, 

countable subadditivity, and product measure, Liu [1] 

established uncertainty theory. The degree of belief that an 

unknown event might occur is expressed by an uncertain 

measure. Uncertain quantities are represented by the idea of an 

uncertain variable, which is a measurable function from an 

uncertainty space to the set of real numbers. An uncertain 

variable is described by its uncertainty distribution. 

Programming, logic, risk management, and reliability theory 

all make extensive use of uncertainty theory. The uncertainty is 

frequently not constant; rather, it evolves through time. Liu 

suggested uncertain processes as a way to explain dynamic 

uncertain systems [2]. In the context of uncertainty theory, 

uncertain statistics is a methodology for gathering and 

analysing experimental data (supplied by experts). 

Assume that, while not knowing the precise shape of this 

distribution functions, one should aware that the states of a 

system take values from a particular set with an unknown 

distribution. One might discover limitations on this 

distribution, such as expectations, variance, or limits on these 

values. Let's say one need to pick a distribution that, based on 

what one knows, is, in some ways, the best estimate. Typically, 

there exist an endless number of distributions that satisfy the 

restrictions. Which one ought to should one pick? To begin 

answering this query, let's first go over the definitions of 

entropy and cross-entropy. 
Entropy was first suggested by Shannon [3] in 1949 as a 

way to gauge how uncertain random variables are. Zadeh [4] 
suggested fuzzy entropy, which is defined as a weighted 
Shannon entropy, to measure the degree of fuzziness. This 

concept was inspired by the Shannon entropy. Numerous 
academics have investigated fuzzy entropy, including [5–13]. 
Jaynes [14] first proposed the maximum entropy principle: 
pick the distribution with the highest entropy among those that 
satisfy the conditions. In addition to this approach, Good [15] 
presented cross-entropy. It is a non-symmetric way of 
measuring how two probability distributions differ from one 
another. Other names for this idea include directed divergence, 
relative entropy, and expected weight of evidence. Bhandari 
and Pal [16] defined the cross-entropy for a fuzzy set via its 
membership function based on De Luca and Termini's fuzzy 
entropy. Studies on the fuzzy cross-entropy theory can be 
found in [17, 18]. Kullback [19] first introduced the idea of 
choosing the distribution with the lowest cross-entropy out of 
those that fit the conditions. A huge database can be used to 
choose a number of representative samples using the 
maximisation of entropy approach. For more information, see 
[20-26] on how the principles of maximum entropy and 
minimum cross-entropy have been used to machine learning 
and decision trees. Portfolio selection [27] and optimization 
models [28, 29] are examples of other uses. 

Human uncertainty is modelled using uncertainty theory. 

A key role is played by the distribution of uncertainty. In 

contrast to probability distribution (based on the sample), the 

author frequently requests that some subject-matter experts 

assess their level of confidence that each event will occur. The 

importance of the empirical prior information increases at that 

point. Except for incomplete knowledge, such as the previous 

distribution function, which may be based on intuition or prior 

experience with the situation, the distribution function is 

frequently absent in real-world scenarios. Liu [30] introduced 

uncertain entropy to define uncertainty originating from 

information shortage in order to more accurately estimate the 

uncertainty distribution. The maximum entropy principle of 

uncertainty distribution for uncertain variables was researched 

by Chen and Dai [31]. Dai and Chen present several formulas 
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for the entropy of functions dealing with uncertain variables 

with typical uncertain distributions, making it easier to 

compute the entropy. This paper introduces the notion of cross-

entropy for uncertain variables to deal with the divergence of 

two given uncertain distributions. Additionally, several real-

world examples are given to determine unknown cross-

entropy. In real-world situations, one frequently needs to 

estimate the uncertainty distribution of an uncertain variable 

using the known (partial) information, such as the prior 

uncertainty distribution, which may be based on experience or 

intuition with the specific issue at hand. The least cross-

entropy principle in uncertainty theory will be examined in this 

context. The remainder of the essay is structured as follows: In 

Section 2, a few foundational ideas of uncertainty theory are 

quickly reviewed. Section 3 introduces the idea and 

fundamental characteristics of entropy of unknown variables. 

Section 4 introduces the idea of cross-entropy for uncertain 

variables and also studies various mathematical features. 

Section 5 presents the proof of the least cross-entropy principle 

theorem for unknown variables. In Section 6, the generalised 

cross-entropy for uncertain variables is investigated. In Section 

7, a succinct overview is provided. 

 

2.  Some basic concepts 

Let Γ  be a nonempty set, and L  a σ -algebra over Γ . An 

uncertain measure Μ  is a set function defined on L  satisfying 

the following four axioms: 

Axiom 1. (Normality Axiom) { } 1M Γ = ; 

Axiom 2. (Duality Axiom) { } { } 1c
M MΛ + Λ =  for any event 

A L∈ ; 

Axiom 3. (Subadditivity Axiom) For every countable 

sequence of events { }iΛ , one should have 

 

1 1

{ }i i
i i

M M
∞∞

= =

 
Λ ≤ Λ 

 
∑∪  

 

Axiom 4. (Product Measure Axiom) Let kΓ  be nonempty 

sets on which kΜ  are uncertain measures, k = 1, 2,. . . , n, 

respectively. Then the product uncertain measure Μ  is an 

uncertain measure on the product σ -algebra 1 2 ... nL L L L= × × ×  

satisfying 

 

1 1
min { }

n

k k k
k i n

M M
= ≤ ≤

 
Π Λ = Λ 

 
. 

 

An uncertain variable is a measurable function from an 

uncertainty space ( , , )L MΛ  to the set of real numbers. The 

uncertainty distribution function : [0,1]RΦ →  of an uncertain 

variable ξ  is defined as ( ) { }x M xΦ = ξ ≤ . The expected value 

operator of uncertain variable was defined as: 

 
0

0

[ ] { } { }E M r dr M r dr
+∞

−∞

ξ = ξ ≥ − ξ ≤∫ ∫  

 

provided that at least one of the two integrals is finite. 

Furthermore, the variance is defined as 2
[( ) ]E eξ − , where e is 

the finite expected value of ξ . 

 

 

3.  Entropy 

Definition 1: Let ξ  be an uncertain variable with 

uncertainty distribution ( )xΦ . Then its entropy is defined by 

 

[ ] ( ( ))H S x dx
+∞

−∞

ξ = Φ∫ , 

 

where ( ) ln (1 ) ln(1 )S t t t t t= − − − − . 

 

Note that ( ) ln (1 )ln(1 )S t t t t t= − − − −  is strictly concave on 

[0,1] and symmetrical about t = 0.5. Then [ ] 0H ξ ≥  for all 

uncertain variables ξ . 

Liu proved that 0 [ ] ln 2H≤ ξ ≤  if ξ  takes values in the 

interval [a, b], and [ ] ( ) ln 2H b aξ = −  if and only if ξ  is an 

uncertain variable with the following distribution: 

 

0, if

( ) 0.5, if

1, if

x a

x a x b

x b

<


Φ = ≤ ≤
 >  

 

Theorem 1: Assume ξ  is an uncertain variable with 

regular uncertainty distribution Φ . If the entropy [ ]H ξ  exists, 

then 

 
1

1

0

[ ] ( ) ln
1

H d
− α

ξ = Φ α α
− α

∫ . 

 

Theorem 2: Let ξ  and η  be independent uncertain 

variables. Then for any real numbers a and b, one should have 

 

[ ] [ ] [ ]H a b a H b Hξ + η = ξ + η . 

 

Furthermore, Chen and Dai proved the following 

maximum entropy theorem for uncertain variables. Let ξ  be an 

uncertain variable with finite expected value e and variance 2σ

. Then [ ] / 3H ξ ≤ πσ  and the equality holds only if ξ  is a 

normal uncertain variable with expected value e and variance 
2σ , i.e., ( , )N e σ . 

Definition 2: Suppose that ξ  is an uncertain variable with 

uncertain distribution Φ . Then its quadratic entropy is defined 

by 

 

[ ] ( ( ))(1 ( ))Q x x dt
+∞

−∞

ξ = Φ − Φ∫ . 

 

Dai looked into a few mathematical aspects of quadratic 

entropy, namely the maximisation principle and the associated 

maximum quadratic entropy theorems with moment 

constraints. The estimation of uncertainty distributions in 

uncertain statistics has also been done using the quadratic 

entropy. 

 

4.  Cross-entropy 
By utilising uncertain measures, one should introduce the 

idea of cross-entropy for unknown variables in this part. First, 

one needs review cross-entropy, an information theoretic 

distance. Let P = {pl, p2, . . . , pn} and Q = {ql, q2, . . . , qn} be 
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two probability distributions where 
1 1

1
n n

i i
i i

p q
= =

= =∑ ∑ . The cross 

entropy, ( ; )D P Q  is defined as follows: 

 

1
1

( ; ) ln
n

i

i i

p
D P Q p

q=

=∑ .      (1) 

 

Eq. (1) is asymmetric, the author used the symmetric 

version: 

 

1

( ; ) ln ln
n

i i
i i

i i i

p q
D P Q p q

q p=

 
= + 

 
∑ . 

 

Inspired by this, the author will introduced the following 

function to define cross-entropy for uncertain variables 

 

1
( , ) ln (1 ) ln

1

s s
T s t s s

t t

−   
= + −   

−   
, 0 1t≤ ≤ , 0 1s≤ ≤  

 

with convention 0.ln 0 = 0. It is obvious that T (s, t) = T 

(1- s, 1 - t) for any 0 1t≤ ≤  and 0 1s≤ ≤ . Note that 

 

1
ln ln

1

T s s

s t t

∂ −
= −

∂ −
, 

 

(1 )

T t s

t t t

∂ −
=

∂ −
, 

 
2 1

(1 )

T

s s s

∂
=

∂ −
, 

 
2 1

(1 )

T

t s t t

∂
=

∂ ∂ −
, 

 
2

2 2 2

1

(1 )

T s s

s t t t

∂ −
= +

∂ −
. 

 

When s = t, T(s, t) becomes a strictly convex function with 

regard to (s, t), and it's at this point that it reaches its minimal 

value of 0. According to uncertainty theory, the uncertainty 

distribution of a variable is the best way to describe it. The 

inverse uncertainty distribution has several beneficial 

characteristics, and it is simple to derive the inverse uncertainty 

distribution for processes involving unknown variables. 

Therefore, the author shall use uncertainty distributions to 

define cross-entropy. 

Definition 3: Let ξ  and η  be two uncertain variables. 

Then the cross-entropy of ξ  from η  is defined as: 

 

[ ; ] ( { }, ( })D T M x M x dx
+∞

−∞

ξ η = ξ ≤ η ≤∫ , 

 

where 
1

( , ) ln (1 ) ln
1

s s
T s t s s

t t

−   
= + −   

−   
. 

 

It is obvious that [ ; ]D ξ η  is symmetric, i.e., the value does 

not change if the outcomes are labeled differently. Let ξΦ  and 

ηΦ  be the distribution functions of uncertain variables ξ  and 

η , respectively. The cross-entropy of ξ  from η  can be written 

as: 

 

( ) ( )
[ ; ] ( ) ln (1 ( )) ln

( ) ( )

x x
D x x dx

x x

+∞
ξ ξ

ξ ξ
η η−∞

    Φ Φ
 ξ η = Φ + − Φ   

    Φ Φ    
∫ . 

 

The cross-entropy does not depend on the actual values 

that the uncertain variables ξ  and η  take; rather, it depends 

solely on the number of values and their uncertainties. 

Theorem 3. For any uncertain variables ξ  and η , one 

should have [ ; ] 0D ξ η ≥  and the equality holds if and only if ξ  

and η  have the same uncertainty distribution. 

Proof. Let ( )xξΦ  and ( )xηΦ  be the uncertainty 

distribution functions of ξ  and η , respectively. Since T(s, t) is 

strictly convex on [0, 1] × [0, 1] and reaches its minimum 

value when s = t. Therefore 

 

( ( ), ( )) 0T x xξ ηΦ Φ ≥  

 

for almost all the points x R∈ . Then 

 
[ ; ] ( ( ), ( )) 0D T x x dx

+∞

ξ η
−∞

ξ η = Φ Φ ≥∫ . 

 

For each [0,1]s ∈ , there is a unique point t = s with T(s, t) 

= 0. Thus, [ ; ] 0D ξ η =  if and only if ( ( ), ( )) 0T x xξ ηΦ Φ =  for 

almost all points x R∈ , that is { } { }M x M xξ ≤ = η ≤ . 

 

5.  Principle of minimum cross-entropy 

The distribution function of an uncertain variable cannot 

be determined in real issues without incomplete information, 

such as some prior distribution function, which may be based 

on experience or intuition. The author will use the minimum 

cross-entropy principle to select the distribution that, given the 

moment constraints and the prior distribution function, is most 

similar to the given prior distribution function. This is because 

the distribution function must be consistent with the 

information and our prior experience. 

Theorem 4. Let ξ  be a continuous uncertain variable with 

finite second moment m2. If the prior distribution function has 

the form 

 
1

( ) (1 exp( ))x ax
−ψ = + ; a < 0 

 

then the normal uncertain distribution with second 

moment m
2
 is the minimal cross-entropy distribution function. 

Proof. Please see Ref. [32]. 

 

6.  Generalized form of  cross entropy 

In this part, let us define a strictly convex function ( )xΠ  

satisfying ( ) 0xΠ = , a generalised cross-entropy for an 

unknown variable. Numerous functions meet the 

aforementioned requirement, including: 

 
2

( )x x xΠ = − ,  
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( )
1

x x
x

α −
Π =

α −
, ( 0, 1α ≥ α ≠ ) and  

 

1 1
( )

2 2
x xΠ = − − .  

 

For convenience, let us define 

 

1
( , ) (1 )

1

s s
T s t t t

t t

−   
= Π + − Π   

−   
, ( , ) [0,1] [0,1]s t ∈ × . 

 

It is easy to prove that T(s, t) is a function from [0,1] [0,1]×  

to [0, )∞  with convention: 

0
( ,0) lim ( , )

t
T s T s t

→
=  and 

1
1

( ,1) lim ( , )
t

T s T s t
−→

= . 

 

7.  Conclusions 

In the introduction to this study, the author reviewed the 

idea of entropy for unknown variables and its mathematical 

features. Then, to address the divergence of two uncertain 

variables, the author established the notion of cross-entropy for 

uncertain variables. The auuthor also looked at some of this 

cross-mathematical entropy's characteristics and put forth the 

minimum cross-entropy concept. Additionally, a few examples 

for calculating uncertain cross-entropy are given. The study on 

generalised cross-entropy for uncertain variables is the last one 

the author does. The author intend to continue our research in 

the future to uncover further characteristics of the cross-

entropy measure we've suggested, particularly in cases where 

the prior distribution function of an uncertain variable has 

several forms. The author also intend to use our findings in the 

areas of machine learning, uncertain optimization, and 

portfolio selection. 
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