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ABSTRACT 

In this research, a straightforward model for calculating the optical characteristics of a medium 

containing randomly distributed QDs is proposed. For the purpose of obtaining analytical results, some 

simplifications, such as the presumption of limitless walls and huge hole masses, have been made. 

When compared to earlier methods, where the dots were considered like points and the scattering 

effects were ignored, the simplified model is still an improvement. The method was used to construct an 

effective energy- and size-dependent complex dielectric function for a single GaAs/GaAlAs QD while 

accounting for coherence effects on the amplitude of the dipole densities and excitonic transitions. 

Coherence effects can be seen in the lineshapes of the peaks in the fictitious portion of the susceptibility 

and the oscillator strengths. It has been discovered that as the QD's radius is reduced, the excitonic 

energies and oscillator strengths rise. The dispersed pulse exhibits an angular dependence for parallel 

and perpendicular polarisation to the reference plane that is equal close and distant from the 

resonances, with the intensity being significantly higher in the former case. 

 
1.  Introduction 

Excitonic transitions can be used to explain the optical 

properties of quantum dots (QDs). Excitonic effects are 

strengthened as a result of the internment of quasi-particles in a 

dot, which enhances the oscillator strength and binding energy 

of excitons density [1-3]. Calculations of oscillator strengths 

and excitonic binding energies have taken a lot of time. 

Utilising the sphere-shaped model of QDs, the author’s 

goal is to go into great depth about how exciton resonance 

affect the characteristics of dispersed pulse. Making the use of 

the necessary Green functions, the author solves the 

constitutive equations using the Stahl real density matrix 

(RDM) technique. The author determined the polarisation and 

effective (isotropic) dielectric susceptibility function of the 

quantum dot using the coherent amplitudes. Using this 

technique, one can account for the electromagnetic wave's and 

carriers' coherence within the QD. Additionally, the 

contribution of the continuum states is accurately described. 

The author derived the scattered pulse amplitudes from the 

effective QD susceptibility using the classical theory of Mie 

resonances. The author then go into its characteristics in 

relation to important physical factors including the scattering 

angle, incident pulse frequency, and dot radius. For GaAs/Ga1-

xAlxAs QDs, numerical results are provided and analysed. 

 

2.  Theoretical formulations 

According to Stahl's method, the optical characteristics of 

a multi - band semiconductors at the fundamental gap in the 

weaker field regime are described by a collection of governing 

equations on the bandgap transformation amplitudes ( , )e hY r rλµ

� �
 

of the e-h pair of coordinates, re and rh, respectively [4-7] as: 

[ ]t
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,                                (1) 

 

where Hλµ  represents the two-band effective mass 

Hamiltonian, together with e-h interaction; E
�

 represents the 

laser pulse electric field, λµΓ  stands for the phenomenological 

damping coefficient, and Mλµ  represent the coupling functions 

defined as the transitional dipole moment densities, which may 

be expressed in the following manner [6]: 
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Mλµ  is the equivalent integrated strength, whose explicit 

expression is provided in Ref. [6], and 
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the so-called coherence radius, with 0r λµ  being the 

transition dipole density. The author found this is useful to take 

the coherent radius as independent constant and to assume that 

they have values in the range of 0.1 to 0.3 of the exciton 

Bohr’s radius, as in the majority of Stahl method uses. 

We may determine the polarisation within the quantum dot 

from the coherent amplitudes of Eqs. (1) and (2). 
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In Eq. (4), e hr r r= −
� � �

 stand for the relative coordinate and 

CMr
�

 represents center of mass (CM) of the system. 

To ascertain the optical characteristics of a matrix 

comprising QDs, one must simultaneously solve the 

fundamental Eqs. (1), Maxwell's equations out beyond and 

within the QD, where the excitonic polarisation is determined 

by Eq. (4), and applies boundary constraints. The author notice 

that the interpretation of the ( )CMP r
�

 in Maxwell’s equation 

relates the excitonic CM coordinates inside the QD, but in the 

present analysis, the fundamental equations refer to a 6-D 

configurationally space ( , )e hr r
� �

, where the author assumed 

adequate boundary conditions for e-h motion. The present 

problem is very challenging because of this intricacy, but with 

the help of the following simplifying assumptions, one can find 

analytical answers. In order to force the proper normalisation 

of Eq, the author supposed that both electrons and holes have 

unlimited confinement potentials (2). To allow for the 

disregard of the corresponding kinetic term in the Hamiltonian 

Hλµ , it is assumed that the effective mass of the holes is 

significantly more than the mass of the electron [8]. By using 

the proper gap energies
h hgn l HE , 

h hgn l LE , one can account for 

how the heavy and light holes' varied masses affect the 

confinement on them. Label the hole states here with nh and lh. 

The aforementioned assumptions and the placement of the 

hole at the center of QD, which simplifies computation and 

results in theoretical calculations for the QD susceptibility, 

have no bearing on the primary physical subject under 

investigation, the scattering of an electromagnetic pulse by an 

ensemble of QDs. 

The author employed a dielectric screened Coulomb 

interaction among e-h pairs and the effective mass 

approximation for the valence and the conduction bands, 

separating heavy- and light -band effective masses. Using the 

necessary Green functions, the author solved the constitutive 

Eqs. (1), determine the polarisation, and then calculate the QD 

susceptibility [9]. 
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Kummer's first-type and second-type functions are 

M(a,b,z) and U(a,b,z), respectively [10]. The author noted that 

only the term l = 0 contributes to the susceptibility after 

selecting an isotropic expression for the dipole density (2). 

Using the parameters acceptable for GaAs in an AlAs 

matrix and the approximation of infinite barriers, the author 

has performed thorough computations for QD of various radii. 

Figure 1 reports the findings for the actual and fictitious 

components of the QD's susceptibility. One can see that 

resonances correspond to the excitonic transitions in the 

imaginary part of exχ . The author also showed in Figure 2 how 

the radius of the QD affects both the binding energy and the 

lowest exciton transition. While the bulk value already exists 

for QD having dimensions of approximately five times the 

Bohr radii, one may observe that an influence of confinement 

predominates over the rise in binding energy for tiny radii 

relative to Bohr radii. 

 

 
Figure 1. Variation of real and imaginary parts of χ  versus Eg for 

GaAs/Ga1-xAlxAs QD of dimensions *1 eR a= . 

 

 
Figure 2. Energy of the lowest optical transition and binding energy 

of the excitons as functions of the dot radius. 
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Figure 3. Variation of the lowest exciton transition oscillator strength 

with QD radius. 

 

The oscillator strength of optical transition density 

likewise rises as a result of confinement. For various values of 

the coherence radii, the author reported in Figure 3 the 

estimated magnitudes of the oscillator strength density versus 

QD radius. Decreasing oscillator strength and resonant peak 

heights are the results of rising coherence radius. 

 

3.  Results and discussion 

Let us now go through how a QD of radius R that is 

submerged in the isotropic and homogeneous media reacts 

optically to an incident linearly polarised electromagnetic pulse 
( )( ,0,0)i
xE , 

 
( ) ( )exp( )i i I
xE E ik z= ,                                                          (7) 

 

where the superscript I denotes the quantities that apply to 

the area around the dot. The author employed the equation 

applicable to a spherical dot with a mean homogenous 

susceptibility for wave vector k
(II)

 inside the QD. 

 
2 ( )2

2

II

b ex

c k
= ε + χ

ω
,                                                             (8) 

 

where bε  stands for dielectric function at the frequency 

greater than the resonant frequency. An electromagnetic pulse 

will be generated inside QD by the coherent pulse; as a result 

another pulse ( )s
E
�

 will be scattered outside the dot. The QD's 

modest size in relation to the wavelength we've been thinking 

about is what drives this approximation. 

The author used the classic theory as developed by Mie 

and Debye [11, 12] to determine the amplitudes of scattered 

coherent pulse in the frequency domain in which LH and HH 

excitonic states are significant, considering the circumstances 

of GaAs/Ga1-xAlxAs or GaxIn1-xAs/GaAs QDs. After 

calculating the effective QD susceptibility exχ  and, 

consequently, the effective dielectric function ( )IIε . 

The extinction cross-section of a QD is calculated from 

them in terms of the QD radius and the input pulse energy, 

appearing through the parameter 

 

( ) 1/ 2( )I R
q

c
= ω εℏ

ℏ
.                                                             (9) 

 

 
Figure 4. For energies close to the lowest excitonic states, the cross-

section Q of QD with *1 eR a= . The two curves show how coherence 

has an impact on line forms and correspond to various coherence 

radius values. 

 

The rate of energy loss, which includes both dissipation 

and scattering, to the rate of incoming flux is known as the 

extinction cross-section Q. Figure 4 shows the findings for the 

cross-section of a QD with radius *
ea  produced in Table 1 

parameters. One can see that the cross-section Q is essentially 

nonexistent away from the resonances because the ratio 

2 /q R= π λ  in this case is so small (~ 0:1). Additionally, one 

can see that it grows as energy rises (because it decreases), 

with twice the geometric cross-section serving as its upper 

limit 0λ → . However, very strong peaks that correlate to the 

QD's excitonic resonances may be seen in the cross-section. 

Ruppin [13] has studied this issue in relation to the 

fundamental scattering of QD with the effective dielectric 

function. 

 
Table 1. Parameters that apply to bulk GaAs (masses in m0, energy in 

meV, and length in angstrom) 

Parameter Value 

em  0.0665 

hHm  0.34 

hLm  0.094 

(GaAs)bε  12.53 

(AlAs)bε  10.03 

2

0(0) /(2 )HP m
�

 
5.75 

2

0(0) /(2 )LP m
�

 
1.92 

*R ey  5.76 

*
ea  99.6 

gH gLE E=  1519.1 

0 0H Lr r=  *0.1 ea  

H LΓ = Γ  *0.2R ey  

 

Finally, let us look at the scattered wave's polarisation and 

strength. The author calculates the square value of electric 

field's amplitude and take into account polarisation 

perpendicular ( ⊥ ) and parallel ( � ) to the plane of observation, 

described via set of angle coordinates ( , )θ φ  of scattered pulse, 
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φ  representing the angle with the incoming electric field's 

polarisation direction and θ  the angle with respect to the 

incident pulse propagation direction (z). The author arrived at 

the following formulas by taking into account the 

approximation of huge distance r >> λ : 

 
2

( ) ( ) 2coss sE Iθ = φ� ,                                                         (10a) 

2
( ) ( ) 2sins s

E Iφ ⊥= φ ,                                                         (10b) 

 

where 

 
2

(1)( )2
( ) (1) '

2 2
1

(cos )
( 1) (cos )sin

sin4

I
s l e m l

l l
l

P
I B P B

r

∞

=

 θλ
= − θ θ −  θπ  

∑� ,   (11a) 

 
2

( )2 (1)
( ) (1) '

2 2
1

(cos )
( 1) (cos )sin

sin4

I
s l e m

l l l
l

P
I B B P

r

∞

⊥
=

 λ θ
= − − θ θ  θπ  

∑ ,   (11b) 

 

where e
lB , m

lB  are the Mie coefficients [11, 12], ( )sEθ , 
( )s

Eφ  stand for components of electric field of scattered pulse, 

and (1)
lP  are associated Legendre polynomials. 

 

 
Figure 5. Linearly polarised light scattering polar diagrams. 

 

The author determined the intensity and polarisation of 

dispersed signal in terms of the observation angle θ  and for 

two frequencies that were selected to be far and close to an 

excitonic resonance, respectively. Figure 5 displays these polar 

diagrams for the QD with radius *1 ea . The inner curve radii 

vector are dependent on intensity ( )sI
�

, while the radii vector of 

the out-side curves are dependent on intensity ( )sI⊥ . One may 

see the isotropy of I⊥  
and the odd angular dependency for I� . 

There exists a dip in the symmetry plane and an intensity peak 

in both the forward and backward directions for 0oθ =  and 

90oθ = , respectively. As would be predicted by the criterion 

Rλ >> , this distribution is a classic dipolar one. By increasing 

the QD radius, one is able to produce asymmetric polar 

diagrams that are comparable to those seen in the problem's 

literature [12]. This happens for frequencies both on and off 

resonance, however the scattered pulse intensities at resonance 

are substantially higher. Figure 6 shows the intensity of the 

dispersed pulse for 0oθ =  as a function of energy ωℏ  to 

illustrate this improvement. 

 

4.  Conclusions 

In order to determine the optical characteristics of QDs, in 

this paper, the author built a straightforward model that 

specifically takes into account the interaction of an incoming 

coherent pulse on a QD. In order to get analytical results, the 

author has adopted several simplifications, such as the 

assumption of limitless walls and enormous hole masses. 

When compared to earlier methods, when the dots were 

considered like points and the scattering effects were ignored, 

our simplified model is nevertheless an improvement. In order 

to compute size-dependent complex dielectric function and an 

effective susceptibility that takes into account the transition 

between exciton states and includes coherence effects on the 

amplitude of the dipoles per unit volume, the author used the 

aforementioned method to a single GaAs/GaAlAs QD. 

Coherence effects can be seen in the lineshapes of the peaks in 

the fictitious portion of the susceptibility and the oscillator 

strengths. The author demonstrated that the oscillator strengths 

and excitonic energy rise as the QD's radius decreases. The 

dispersed pulse exhibits an angular dependency for 

perpendicular as well as parallel polarisation to the reference 

plane that is equal close and distant from the resonance, with 

the intensity being significantly higher in the former case. All 

correlation and size distribution effects have not been taken 

into account because impacts are only computed for a single 

quantum dot in the current paper. This is accurate since the 

author took into account a low density of uniformly spaced 

dots.  
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