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ABSTRACT 

Using the nonlinear polarisation term from Mie theory, this study aims to create a theoretical model to 

explain the experimental data of scattered second harmonic output intensity in powder sample. 

Experimental research on the scattered second harmonic signal from the urea sample was conducted 

using the Kurtz powder method. Theoretical justifications for the Kurtz technique's findings 

presuppose that the powder's particles I are submerged in a transparent liquid medium with a nearly 

same refractive index and (ii) are planar parallel slabs of a single crystal. According to us, if we first take 

into account the cooperative scattering that results from single particle nonlinear scattering occurring 

in the medium, the general treatment for second harmonic generation analysis from powders may be 

studied more effectively. We have created a theoretical model in this research to estimate second 

harmonic generation in powder samples. The particles must be significantly larger than the wavelength 

of light and be assumed to be spherical in order for the model to work. 

 
1.  Introduction 

It has been proven that second harmonic production is a 

very effective spectroscopic instrument for studying a variety 

of physical and chemical phenomena. It is applied for both 

surface research and verifying the homogeneity of waveguide 

samples [2, 3] as well as for the creation of blue light laser 

sources that can be used in opto-electronic devices [1, 2]. A 

significant area of scientific interest is the theoretical growth of 

the second harmonic generation in small particles and 

randomised disordered media. It is important to note that 

second harmonic generation (SHG) theory in metallic and 

semiconducting systems is well researched [4–9].  

Restrictive models of the intrinsic bulk or surface [10–13] 

nonlinear response of the sphere are used in investigations on 

the second harmonic behaviour of tiny particles. A tiny sphere 

of centrosymmetric material irradiated by linearly polarised 

light was the subject of a recent calculation by Dadap et al. 

[14] to determine second harmonic Rayleigh scattering. The 

second harmonic generation (SHG) electromagnetic theory 

from the surface of a sphere with a radius smaller than the 

wavelength of light is the subject of their research. They 

postulated that the second harmonic generation in tiny spheres 

is caused by locally excited electric quadrupoles and 

nonlocally excited electric dipoles. Small spherical particle 

SHG caused by an inhomogeneous longitudinal field was 

investigated by Brudny et al. in their study published in 2015 

[15]. They have taken into consideration particles with a radius 

smaller than a light wave's wavelength. SHG by two-

dimensional particles has recently been numerically analysed 

by Valencia et al [16]. They came to the conclusion that when 

symmetrical particles are lit along its axis of symmetry, SHG 

does not occur. Even so, a combination of s and p polarised 

light was discovered to cause s polarised SHG. 

The goal of the current research is to create a theoretical 

model that uses the nonlinear polarisation factor from Mie 

theory to account for experimental observations of scattered 

SH output intensity in powder samples [17]. Experimental 

research on the scattered second harmonic signal from the 

urea sample was conducted using the Kurtz powder method 

[18]. Theoretical justifications for the Kurtz technique's 

findings presuppose that the powder's particles I are 

submerged in a transparent liquid medium with a nearly same 

refractive index and (ii) are planar parallel slabs of a single 

crystal. We believe that if we first take into consideration the 

single particle nonlinear scattering that results from the 

medium before accounting for the cooperative scattering, the 

general approach for SHG analysis from powders can be 

evaluated more effectively. The Mie scattering hypothesis 

[17] can be used to explain the scattering caused by organic 

powders because their particles are typically significantly 

larger than the wavelength of light. We have created a 

theoretical model in the current study to estimate SHG in 

powder sample. The particles must be significantly larger 

than the wavelength of light and be assumed to be spherical in 

order for the model to work. 

 

2.  Theoretical formulation 

Due to the nonlinear interaction of a plane monochromatic 

wave with the spherical particle, we have been able to find the 

solution to Maxwell's equations that describe the electric field 

at second harmonic frequency. We have assumed that the 

characteristics of the medium drastically shift across the 

spherical particle. When the particles don't show second-order 

nonlinearity, the normal Mie scattering results apply. Second 

harmonic generation can occur in molecules with high first-
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order hyperpolarizability values. A greater number of 

scattering centres will result in more harmonic production. The 

scattered second harmonic light from the sample's powder will 

appear as a result of the coherent superposition of the dispersed 

second harmonic. The nonlinear term takes the place of the 

source term in this scenario as there isn't a source wave at 

second harmonic that has been scattered from the sample. 

The Maxwell's field equations in terms of the Hertz vector 

are written as follows in spherical polar coordinates: 
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Here, r, θ , φ  are polar coordinates and k is the wave 

vector of the electromagnetic wave. The wave's electric field 

amplitude E has the following relationships to the Hertz vector: 
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Ref. [17] provides the accepted solution to Equation (1) 

for the potential of the incident wave. 
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Every finite domain of the kr plane has the function 

( )l rkψ , which is regular. The second harmonic production 

may result from the blending of two fundamental waves in the 

spherical particle. We can think of the nonlinear term as a 

source term in the case of the second harmonic. The second-

order nonlinear optical susceptibility is represented by 
(2)

1 2NP E E= χ . E1 and E2 are the electric fields of the mixing 

fundamental waves, and the nonlinear term is caused by the 

medium's finite second-order susceptibility. When we include 

the nonlinear factor in Eq. (1) in terms of Hertz vectors, we 

obtain 
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Here, 2k  and lmk  stand for the fundamental wave in a 

medium and the second harmonic wave in a vacuum, 

respectively. The interacting fundamental waves are 

represented by eΠ  and 0Π . For the scattered second harmonic 

wave, the aforementioned equation has been formulated, and 

the following formula has been used to get its solution: 
 

( ) ( )S w w PI= Π + .                                                          (7) 

 

Here, w is the Hertz vector for the second harmonic wave 

in the medium and ( )wΠ  stands for the wave within the 

medium. ( )wΠ
 
is the complementary result of leaving out the 

nonlinear term, and PI is the specific integral discovered as: 
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For ( )wΠ , we use the solution similar to Eq. (5) as: 
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Calculated from the boundary conditions, A1 is the 

perturbative term resulting from the nonlinearity. 2mk  is the 

second harmonic wave's internal wave vector. 

Similar representations of the Hertz vector for scattered 

output can be found in Ref. [17]. 
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where 1 (1)

2 2 1/ 2( ) / 2 ( )l lk r k r H kr+ξ = π  and the tangential 

and radial components of the field should be continuous across 

the surface of the sphere, which is one of the usual boundary 

requirements that determines the value of the constant B1. We 

have introduced the boundary conditions mathematically as: 
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and 
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Knowing the scattered field, which may be connected to 

the Hertz vector ( )sΠ
 
via Eqs. (2) - (4) allows one to calculate 

the scattered output intensity. (2) - (4). The solution to Eq. (6) 

has been found by applying Eq. (5) for ( )sΠ ; the procedures 

to solve for ( )wΠ  are as follows. Therefore, the expression of 

( )wΠ  can be used to get ( )sΠ  in Eqs. (11) and (12). These 

are a lot of mathematically complex steps, and the only 

answers one can find are numerical. You can write the 

expression for the scattered output intensity as follows: 
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3.  Experimental study of second harmonic generation 

The Kurtz powder method has been used to measure SHG. 

The sample was exposed to a Q-switched 1064 nm 15 ns 

pulsed Nd:YAG laser with a peak output of 5 MW for this. A 

98:2 beam splitter was used to create a reference beam by 

normalising the variations in the primary laser light. A second 

harmonic separator (SHS) was used to filter out the 

fundamental input radiation from the second harmonic (SH) 

radiation at 532 nm that was received at the output. The 

generated SH was seen on a Tektronics 100 MHz digital 

storage oscilloscope after being detected by a photo multiplier 

tube (PMT) (DSO). 250V was used as the PMT's biassing 

voltage. The PMT responds linearly to this biassing voltage. 

For two different ranges of particle size r, namely viz; 60 < r < 

75 µm and 75 < r < 90 µm, we have investigated the variation 

of SH signal intensity as function of intensity of fundamental. 

 

4.  Results and discussions 

We used our study on a sample of urea that had been 

exposed to 1.064 µm Nd-YAG laser. The material parameters 

are taken as k1 = 5.96×106 m-1, k2 = 1.18×107 m-1, k1m = 

9.38×106 m-1, k2m = 1.77×107 m-1, and (2)χ = 2.8×10-12 mV-1.  

 

 
Figure 1. Variation of second harmonic intensity of Urea as a 

function of particle size in single particle scattering (theory). 

 

 
Figure 2. Variation of output second harmonic intensity of Urea as a 

function of intensity of fundamental in different particle size ranges. 

For l = 1, the numerical solutions have been discovered. In 

single particle scattering, Figure 1 shows how second harmonic 

intensity varies with particle size. The graphic shows that the 

second harmonic intensity exhibits oscillatory behaviour rather 

than a monotonous increase with increasing particle size. For 

all intents and purposes, we chose a powder made up of several 

particles, and although though this result cannot be 

scientifically verified, it provides insight into the relationship 

between second harmonic intensity and particle size. 

We have got the numerical findings for the scattered 

second harmonic intensity from a powder of certain particle 

size range in order to make the results consistent with the 

experiment. We have taken into account the powder's Gaussian 

distribution of particle sizes. For two different ranges of 

particle size, we looked at how the SH signal's intensity 

changed in relation to the basic signal's intensity. We've 

presented the variance in second harmonic intensity in figure 2 

as a function of fundamental intensity. The experimental 

results are shown by curves (a) and (c), whereas the theoretical 

results are shown by curves (b) and (d). We discover that the 

basic intensity has a parabolic relationship with the dispersed 

output intensity. The same graph also demonstrates that when 

average particle size increases, output intensity rises. All four 

of the curves display a parabolic shape, which is a sign of 

second-order nonlinearity. The same figure also demonstrates 

that the output intensity rises as average particle size rises, and 

the theoretical findings are in good agreement with the 

experimental findings. 
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