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ABSTRACT 

Nonlinear optics places a significant emphasis on the phenomenon of parametric interaction of coupled 

waves. In both magnetised piezoelectric and non-piezoelectric semiconductors, it is analytically 

explored how the lattice displacement plays a significant role in the parametric amplification using the 

straightforward coupled mode theory. The second order optical susceptibility χ2, which results from 

nonlinearly induced current density and polarisation through lattice displacement, is thought to be the 

source of nonlinear interaction. The lattice displacement (u), effective non-linear polarisation (PEN), and 

crystal cell efficiency (β0) are determined for various situations of practical interest. Large lattice 

displacements (on the order of 10-14 m) can be easily accomplished in piezoelectric coupling or both 

coupling and deformation potential coupling at scattering angles of around 34° and 146°, 36° and 148°, 

respectively. It is possible to construct highly efficient nonlinear processes by using this typical 

scattering angle resonance condition. Additionally, it is discovered that wave number effectively 

increases the lattice displacement. New techniques for building crystal cells and diagnosing 

semiconductor devices are presented in this work. 

 
1.  Introduction 

There are many fundamental nonlinear processes, but 

parametric interaction plays a key role in nonlinear optics, 

particularly in the production of adjustable laser light at 

frequencies not readily accessible from laser sources [1]. The 

creation of parametric oscillators, amplifiers, optical phase 

conjugators, etc. is made possible by the parametric 

interactions in a nonlinear medium [2, 3]. It is well known that 

the second order optical susceptibility of the medium caused 

by nonlinear generated current density or polarisation is where 

parametric interaction originates. 

The crystalline nonlinear media are found to have the 

highest device potential. This is due to the fact that 
(2)χ  is 

nonzero for non-centrosymmetric crystals and that a crystalline 

medium's birefringence can be employed to compensate for 

material dispersion and phase match the velocities of 

fundamental and harmonic radiations. However, nonlinear 

crystals must meet four fundamental requirements for 

nonlinear optical applications, including acceptable 

nonlinearity, optical transparency, correct birefringence for 

phase matching, and enough resistance to optical damage from 

strong optical irradiation [4, 5]. The doped semiconductors are 

discovered to be advantageous hosts because they are 

transparent to photons with energies below their energy band 

gap. Discussions of nonlinear devices and the theory of 

nonlinear interactions help to better understand the 

characteristics of nonlinear materials [6–8]. Economic and 

Sector [9] first identified the parametric interaction of acoustic 

waves with the microwave electric field in piezoelectric 

semiconductors. Cohen [10] did a great job of emphasising the 

significance of the influence a dc magnetic field has on 

parametric behaviour. 

In the current paper, the author attempt to investigate the 

parametric amplification process originating from 
(2)χ  through 

lattice displacement, nonlinear current density, or polarisation 

in a non-degenerate n-InSb crystal of non-centrosymmetric 

nature when a magnetostatic field is applied perpendicular to 

the direction of pump wave propagation. This effort is 

motivated by the intense interest in the field of study of 

parametric interaction based on XX. The analysis of lattice 

displacement (u), effective nonlinear polarization (PEN), 

threshold field (E0th) and crystal cell efficiency (β0) in the 

presence of a magnetostatistic field and piezoelectric-

deformation potential couplings will be the only topics covered 

in the current work. 

 

2.  Theoretical formulations 

We take into account the hydrodynamic model of a 

homogeneous, non-degenerate n-type semiconductor plasma 

with piezoelectric and deformation potential couplings and an 

infinitely large medium containing carriers. This model 

restricts the validity of the analysis to the limit kl << 1, where k 

is the wave number an l is the mean free path of the electrons. 

In order to study parametric interaction processes originating 

from the effective nonlinear optical susceptibility (
ENχ ) the 

medium is subjected to the magnetic field B0 (along z-axis) 

perpendicular to the propagation direction (x-axis) of spatially 

uniform high frequency pump electric field 
0 exp( )E i t− ω . The 

scattered waves are propagating along a direction making an 
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arbitrary angle θ with the pump wave propagation direction, 

i.e. propagating in x-z plane making an angle θ with x-axis. 

Thus θ is the scattering angle, i.e. the angle between 0
k
�

 and 1
k
�

. We apply the coupled mode theory to obtain a simplified 

expression for the acoustic waves via density perturbation. The 

basic equations used are as follows: 
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Equations (1) and (2) represent the zeroth and first-order 

momentum transfer equations, respectively, in which 
0v
�

 and 

1v
�

 are the zeroth and first order oscillatory fluid velocities 

having effective mass m and charge -e and ν  is the 

phenomenological electron collision frequency. Equation (3) 

represents the continuity equation for electrons, where 
0n  and 

1n  are the equilibrium and perturbed electron densities, 

respectively. The Poisson equation (4) gives the space charge 

field 
sE  in which the second and the third terms on the left 

hand side give the piezoelectric and deformation potential 

contribution to polarization, respectively. ε , β and Cd are the 

scalar dielectric, piezoelectric and deformation potential 

constants of the semiconductor, respectively. Equation (5) 

describes the motion of the lattice in a crystal having 

piezoelectric and deformation potential couplings both. In this 

equation ρ , u, γs and C being the mass density of the crystal, 

displacement of the lattice, phenomenological damping 

parameter of acoustic mode and crystal elastic constant, 

respectively. In Eq. (2), we have neglected the effect due to 

0 1
v B×
�

�

 by assuming that the shear acoustic wave is 

propagating along such a direction of the crystal that it 

produces a longitudinal electric field [11].  

In a highly doped semiconductor the low frequency 

acoustic wave (ωs) as well as the pump electromagnetic wave 

(ω0) produce density perturbations (n1) at the respective 

frequencies in the medium which can be obtained by using the 

standard approach [12]. Considering the low frequency 

perturbations (ns) to be proportional to exp[ ( )]s si k x t− ω , while 

v0 varies as 0exp( )i t− ω  and neglecting the Doppler shift under 

the assumption 0 0kvω >> ν > , we get from equations (1) to (4) 

as follows: 
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in which 
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2 0

p
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m
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ε
 is the electron plasma,  

υ being the electron collision, and 
0 /c eB mω =  being the 

cyclotron frequencies, respectively.  

The density perturbations associated with the phonon 

mode (viz, ns) and the scattered electromagnetic waves (nf) 

arising due to the three wave parametric interaction will 

propagate at the generated frequencies ωs and ω0 ± ωs 

respectively. For these modes the phase matching condition ω0 

= ω1 + ωs and 0 1 2
k k k= +
� � �

, i.e. the energy and momentum 

conservation relations should be satisfied.  

Now since θ is the angle between 1
k
�

 and 0
k
�

, thus in 

writing the conservation equations we have assumed 
1

0
y

k =
�

, 

i.e. the scattered wave to propagate in the x- z plane. It must be 

mentioned here that these conservation equations could be 

satisfied over a wide range of scattering angle. Now for 

spatially uniform laser irradiation 
0

0k ≈
�

 and one obtains 

1 s
k k k= =
� � �

 (say).  

On resolving equation (6) into two components (fast and 

slow) by denoting v = vf + vs and n = nf + ns under rotating 

wave approximation (RWA), one obtains: 

 
2 *

2

2

f f s

p f

n n n
n E

t xt

∂ ∂ ∂
+ ν + ω = −

∂ ∂∂
                                     (7a) 

 

and 

 *2 3
2 0

2 3

0

fs s

p s

nn n n e u
n E

t m xt x

∂∂ ∂ β ∂
+ ν + ω + = −

∂ ε ∂∂ ∂
.                   (7b) 

 

In the above analysis we have restricted ourselves only to 

the Stokes component (ω0 – ωs) of the scattered 

electromagnetic waves. One can easily infer from equation (7) 

that the slow and fast components of the density perturbations 

are coupled to each other via the pump electric field.  

Thus the presence of the pump electric field is the 

fundamental necessity for the parametric interaction to occur. 

From equations (5), (7a) and (7b) one obtains the expression 

for ns as: 
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where kx = k cosθ and 
2

/
s

v C= ρ  vs being the velocity of 

the acoustic wave. In the present report in order to study the 

effect of nonlinear current density on the induced polarization 

in a magnetized highly doped semiconductor, the effect of the 
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transition dipole moment is neglected while analyzing 

parametric interaction in the crystal. It is evident from the 

above expression that ns depends upon the various powers of 

pump intensity, 
2

0 0 0
0.5I c E= ηε ; η and c0 being the 

background refractive index of the crystal and the velocity of 

light in vacuum, respectively. This produced density 

perturbation, thus affecting the propagation characteristics of 

the scattered waves, which can be studied by employing the 

electromagnetic wave equation: 
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where 
0.5

0 0
( )

L L
c

−= µ ε ε  is the velocity of light in the 

medium and 
1

J
�

 is the perturbed current density and 
0/Lε = ε ε .  

The Stokes component of the induced current density is 

given by 
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Using equations (8) and (10a), one gets: 
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In deriving equation (10) we have used the expression for 

the components of v0 (along x - and y-directions) which is the 

oscillatory electron fluid velocity in the presence of the pump 

and the magnetostatic fields. Using Eq. (1), these expressions 

are obtained as: 
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The lattice displacement ( u
�

) in the coupled mode scheme 

obtained from equation (5) as: 
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The different aspect of u
�

 for different situations for 

practical interest are obtained as:  

 

For piezoelectric coupling ( 0, 0)dCβ ≠ = ,  
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For deformation potential coupling ( 0, 0)dCβ = ≠ , 
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For both couplings ( 0, 0)dCβ ≠ ≠ , 
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It is well known that the induced polarization 
1

P
�

 as the 

time integral of the current density 
1

J
�

, one may write: 
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.                                                                    (14) 

 

The effective nonlinear induced polarization is obtained 

from equations (10) and (14) as: 
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Using the expression for effective induced polarization 

deduced for an infinite medium, one can calculate the electric 

field amplitude (ET) in a crystal cell of length L, with the 

assumption that the sample length is of magnitude about two 

order than the pump wavelength, 
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Now equation. (16) can be employed to determine the 

transmitted intensity (IT) as: 
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The efficiency of the crystal cell (β0) is given by 
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Using equations (17) and (18) one gets, 
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Equations (13), (15) and (19) may be used to study the 

lattice displacement, effective polarization and efficiency of 

the crystal cell made of noncentrosymmetric, respectively, as a 

function of magnetic field, scattering angle, couplings constant, 

carrier concentration and wave number. 

 

3.  Results and discussion 

For numerical appreciation, this analysis is applied to a 

specific case of a noncentrosymmetric crystal, which is 

assumed to be irradiated by a 10.6 µm CO2 laser. The material 

constants are taken from Ref. [8]. 

In the present analytical investigation, the lattice 

displacement, effective nonlinear induced polarization and the 

efficiency of the crystal cell are deduced in a heavily doped 

magnetized noncentrosymmetric semiconductor crystal. We 

now focus our attention on the factors, that affects the lattice 

displacement (ub -both coupling, up - piezoelectric coupling 

and ud - deformation potential coupling) in different coupling 

modes. 

 

 
Figure 1: Variation of lattice displacement (ub - Both coupling, up - 

piezoelectric coupling and ud- deformation potential coupling) with 

wave number k at θ = 34o. 

 

It is found that lattice displacement increases with the 

wave number (k) as shown in Figure 1 and this is quite obvious 

as the certain value of input wave number, maximum 

(resonance state) displacement will be at the scattering angle θ 

= 34 and 146 degree. The lattice displacement increases 

linearly with wave number in piezoelectric coupling only, 

while in deformation potential coupling and both the 

couplings, displacement increases gradually, but on the higher 

values of wave number (k = 2×10
7
 m

-1
) it attains maximum 

values as 
16

5.6 10
b

u
−= ×  m, 

164.3 10
p

u −= ×  m, and 
16

0.839 10
d

u
−= ×  m. It is also shows that piezoelectric 

coupling has more effect in compare to deformation coupling. 

 

 
Figure 2: Variation of lattice displacement (up - piezoelectric 

coupling and ud - deformation potential coupling) with scattering 

angle θ at k = 2×105 m-1. 

 

 
Figure 3: Variation of lattice displacement (ub - both couplings) with 

scattering angle θ at k = 2×105 m-1. 

 

Figures 2 and 3 exhibit, the variation of lattice 

displacement ub, up and ud with the scattering angle (θ) at 

constant wave number k = 1 2×105 m−1. It is obtained that ub, 

up and ud increases sharply and attains their maximum value of 

about 
14

13.06 10
b

u
−= × m, 

1411.3 10
p

u −= ×  m and 
14

6.52 10
d

u
−= ×  at the scattering angle about θ = 34 or 146, 34 

or 146, and 36 or 148 degree respectively. It is also inferred 

that in the scattering angle range (θ = 60 −12o) and less than 

nearly 30o and more than nearly 144o, the lattice displacement 

remains at minimum value in different couplings. Hence at the 

θ = 34o and θ = 146o for piezoelectric and both coupling and θ 

= 36o and θ = 148o for deformation coupling, the lattice 

displacement gets its maximum value, which gives the efficient 

polarization and other related parameters. This typical 

resonance condition of scattering angle may be used to achieve 

high efficient nonlinear process in magnetized semiconductor 

plasma.  

One can be easily observed from equation (15) that 

effective non linear induced polarization varies with carrier 

concentration of the medium via plasma frequency (ωp), wave 

number, scattering angle and with magnetic field through 

cyclotron frequency (ωc) and different coupling constants. By 
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using material constants and adjusting depending parameters 

one can set the required condition which is useful in the 

fabrication of nonlinear devices.  

A close look at equations (15) and (19) that efficiency of 

crystal cell is also a function of both the couplings, wave 

number, carrier concentration, external magnetic field, 

scattering angle and the length of the crystal cell. It is also 

observed that efficiency of crystal cell is strongly depends on 

the input pump intensity and magnetic field. Hence, in order to 

achieve maximum transited intensity and largest efficiency, it 

is always better to used higher pump intensities and dc 

magnetic field. 

 

4.  Conclusions 

The above discussion reveals that the large lattice 

displacement, effective nonlinear polarization and efficiency of 

cell can be easily achieved in magnetized non Centro 

symmetric semiconductor crystal having both the piezoelectric 

and deformation potential couplings. The present theoretical 

study provides a model most appropriate for the finite 

laboratory solid state plasma and an experimental study based 

on this work would provide new means for construction of 

crystal cell and for characterization and diagnostics of 

semiconductors. 
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