
RP Current Trends In Applied Sciences 

Vol. 3, No. 2 (April – June 2024) pp. 20–28 

e-ISSN: 2583-7486 

 

 

Cite this article: N. Singh, Quantum corrections on parametric interactions in ion-implanted semiconductor plasmas, RP 

Cur. Tr. Appl. Sci. 3 (2024) 20–28.  

 

Original Research Article 

 

Copyright: © 2024 by the authors. Licensee Research Plateau Publishers, India 

This article is an open access article distributed under the terms and conditions of the  

Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 

 

Quantum corrections on parametric interactions in ion-implanted 

semiconductor plasmas 
 
Navneet Singh* 

Department of Physics, Rajiv Gandhi Government College for Women, Bhiwani 127021, Haryana, India 

*Corresponding author, E-mail: ndhanda16@gmail.com 
 

ARTICLE HISTORY 

Received: 4 Jan. 2024 

Revised: 28 March 2024 

Accepted: 3 April 2024 

Published online: 10 April 

2024 

 

KEYWORDS 

Quantum effects; 

Parametric interactions; 

Ion-implantation; 

Semiconductor plasma; 

Hydrodynamic model; 

Coupled mode theory; 

Bohm potential; Rotating 

wave approximation. 

ABSTRACT 

Using the quantum hydrodynamic (QHD) model of semiconductor plasmas and the coupled mode 

theory of interacting waves, an analytical investigation is made to study the parametric interactions in 

semiconductor quantum plasmas, whose main constituents are the drifting electrons and non-drifting 

negatively-charged colloidal particles. The phenomenon of parametric interaction is treated as a three-

wave interaction process, involving second-order nonlinearity of the medium. It is found that the 

second-order optical susceptibility in ion-implanted semiconductor quantum plasma is modified due to 

the presence of non-drifting charged colloidal particles. The inclusion of QEs is being done in the 

analysis via quantum correction term in classical hydrodynamic model of homogeneous semiconductor 

plasma. The effect is associated with purely quantum origin using quantum Bohm potential and 

quantum statistics. The colloidal size and the quantum correction term modify the parametric 

amplification characteristics of ion implanted semiconductor plasma medium. Numerical estimates 

made for n-InSb-CO2 laser system exhibit that the QEs on colloids is inversely proportional to their size. 

Moreover critical size of implanted colloids for the effective quantum correction is determined which is 

found to be equal to the lattice spacing of the crystal. The present study also suggests that a proper 

selection of colloid density will lead to anomalous dispersion, which in turns becomes helpful in the 

generation of squeezed states. It is hoped that the present study may add substantially to the present 

knowledge of wave interaction and may become useful in designing the semiconducting devices. 

 
1.  Introduction 

Parametric interactions in semiconducting materials have 

been studied by a number of researchers [1-10]. These 

interactions provide useful information regarding the physical 

properties of the host medium. A variety of nonlinear effects 

have been observed in the interaction of high-power 

electromagnetic waves with semiconductor plasmas. 

Ion implantation is one of the most widely used doping 

techniques in the preparation of doped semiconductors with 

controlled impurity profiles. However, the crystal lattice is 

damaged during the implantation process and post implantation 

annealing becomes necessary to achieve a good degree of 

lattice recovery and electrical activation of the dopants. The 

implanted ions in a host material can modify physical property, 

viz., the high magnetic coercivity and nonlinear optical 

properties [11-14]. Hence, its main application lies in the 

manufacturing of semiconductor components. At low energy, 

chemical binding effects associated with ion-ion and ion-target 

atom interactions may explain the depth profile of implanted 

ion [13]. This process is responsible for the implanted metal 

ions being neutralized during the slowing down (electronic and 

nuclear stopping) processes and somehow agglomerating to 

form colloids of implanted materials.  

However, if the colloid particles could somehow be 

aligned in a long range periodic manner; the host material 

would show a variety of useful thermodynamic, electrical and 

optical properties that can be easily manipulated. The ion 

implantation is a well known technique for versatile 

nanofabrication tool. In recent years, a number of workers [15-

18] have theoretically studied the long range order lattice 

formation of colloid particle of small sizes in piezoelectric 

semiconductors. 

The presence of external drift field well below the 

breakdown of the semiconductor may drive a beam of 

electrons with a drift speed comparable to the ion-acoustic 

phonon speed in the crystal. These external fields induce 

uniform electron current that may charge the as grown colloid 

particles by sticking collisions. By this process colloidal 

plasma will be formed with electrons, negatively charged 

colloid particles and vibrating positive lattice ion centers, 

similar to the dusty plasma. This medium will turn as ion-

implanted semiconductor plasma (IISP) medium. In recent 

past, the role of charged colloids in searching the novel modes 

of propagation and/or in modification of wave characteristics 

of existing modes in semiconductor plasma has been 

extensively explored [19-21]. Workers have established the 

existence of a number of novel modes as well as creative 

modifications in the characteristics of existing modes [19-21] 

of propagation. The current reports in the field also indicate 

that the presence of charged colloids have a strong influence on 

wave characteristics of existing modes even at frequencies 

where colloidal grains do not participate in the linear motion of 
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waves. In such cases, the colloids provide an immobile charge 

neutralizing background in the medium. 

To the best of authors’ knowledge, the quantum effects 

(QEs) have been ignored in all the previous works reported for 

IISPs. However, for relatively large density of electrons in 

doped piezoelectric semiconductor, QEs may become very 

significant in IISPs. In the recent past, Zeba et al. [22] have 

reported the colloid crystal formation in semiconductor 

quantum plasma. They have shown that the dielectric response 

function of the semiconductor is contributed by QEs of 

electrons through Bohm potential and lattice electron-phonon 

coupling effects. QEs on modulation amplification and the 

dispersion, threshold and gain characteristics of Brillouin 

scattered Stokes mode (BSSM) have been studied in IISPs [23, 

24]. But there is no report on the study of QEs on parametric 

interactions in IISPs till date.  

Hence, study of the basic second order nonlinear wave 

interaction i.e. the parametric interaction in IISPs using QHD 

model of plasmas [25] appears to be quite promising. Using 

QHD model parametric amplification characteristics in 

piezoelectric semiconductor has been recently reported [1-10] 

studies the QEs on parametric amplification of acoustic 

phonons in semiconductor magneto-plasmas. Role of 

implanted charged colloids in parametric processes was 

reported by Ghosh et al. [5] in piezoelectric semiconductor 

plasmas. However, in this study, uniform sized colloids were 

considered. This size may be assumed to be smaller than the 

perturbation wavelength, inter-grain distance as well as 

electron Debye radius to simplify the problem without 

scarifying any essential information in general.  

In fact, colloidal plasma consists of many different colloid 

grains with multiple sizes [26-29] in both the space plasma and 

the laboratory experiments. Most of the available literature 

deals with uniform size dust distribution but in nature we 

encounter with grains of multiple sizes. Such disparity 

demands the study of colloidal size distribution effect on 

parametric interactions in IISPs, which will form the basis of 

an adequate examination. It would also be worthwhile to 

examine the modifications in the dispersion characteristics of 

IISPs with respect to earlier works [1-10] using QHD model. 

In addition to QEs, dust size effect has also been incorporated 

to study parametric dispersion characteristics of IISPs which 

make this work a novel study with applications in optical 

signal processing and microelectronics industry. 

 

2.  Theoretical formulations 

In this section, we focused on the second-order optical 

susceptibility arising due to parametric interaction of a high 

frequency pump beam with internally generated acoustic mode 

in an IISP with QEs. The medium is subjected to a spatially 

uniform high frequency pump electric field 0 0exp( ω )E i t−
�

 (i.e. 

pump vector 
0

0k =
�

). We could neglect the non-uniformity of 

the high frequency pump field under dipole approximation 

when the excited acoustic waves have wavelength small 

compared to the scale-length of the electromagnetic field 

variation [30]. We have considered colloids-rich piezoelectric 

semiconductor quantum plasma as a medium under study with 

a view to control the parameters easily.  

The carrier dynamics is described by a set of 

hydrodynamic equations (typically, continuity and momentum 

transfer) that include QEs via a Bohm-like potential. Quantum 

statistics and the new force associated with quantum Bohm 

potential introduce the pressure effects of pure quantum origin. 

The quantum hydrodynamic (QHD) model is a reduced model 

that allows straightforward investigation of the collective 

dynamics rather than to deal with complexities of Schrodinger-

Poisson (2N equations) or Wigner Poisson (phase space 

dynamics) models.  

The condition for charge neutrality in medium with 

negatively charged colloids is given by 

 

0 0 0 0i d d en Z n n= +                                                              (1) 

 

where 0in , 0en  and 0dn  are the number densities of 

unperturbed ions, electrons and the colloid grain, respectively. 

0dZ  is the unperturbed number of charges residing on the 

colloid grain measured in units of electron charge.  

Due to the fact that when plasma is cooled down to an 

extremely low temperature, the de-Broglie wavelength of the 

charge carriers can be comparable to the dimension of the 

system, the ultra-cold colloidal plasma behaves like a Fermi 

gas and one dimensional Fermi gas obeys the pressure law 

[31]. The quantum statistics is included in the model via the 

equation of state which has been slightly modified to include 

Fermionic character of the colloids as: 

 
2 3

1

2

0
3

j Fj j

Fj

j

m V n
P

n
=                                                                (2a) 

 
l e=  (electrons) and d  (colloids with different grain 

size). FjP  is the Fermi pressure, jm  is the effective mass, FjV  

is the Fermi speed; 0 jn  and 1 jn  stand for the equilibrium and 

perturbed plasma carrier density, respectively. The Fermi 

pressure is interpreted as a result of velocity dispersion around 

mean velocity of the plasma particles. It may be obtained by 

assuming the zero-temperature Fermi distribution of plasma 

particles. In terms of Fermi temperature FT , Fermi speed may 

be expressed as [32]: 

 

2 B F
Fj

j

k T
V

m
= .                                                                 (2b) 

 

We consider an IISP system composed of electrons and 

negatively charged colloids. In this situation the one 

dimensional QHD model [33, 34] consists of the continuity and 

the momentum balance equations along with Poisson’s 

equation which are as follows: 

 
2 2

1

2 2

( , ) ( , ) β ( , )
2

ρ ρ
a

Eu x t u x t C u x t

t xt x

∂∂ ∂ ∂
− Γ + =

∂ ∂∂ ∂
                         (3) 

 0

0 0
ν

j j

j

j

v Z e
v E

t m

∂
+ = −

∂
                                                            (4) 

 

32
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1
ν .

4

j jl

l j j

j j j j

Z e nv P
v v v E

t x m m n x m n x

∂∂ ∂∂ 
+ + = − − + 

∂ ∂ ∂ ∂ 

ℏ
                

                                                                                                 (5) 
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1 1 1

0 0

j j j

j j

n v n
v n

x x t

∂ ∂ ∂
+ = −

∂ ∂ ∂
                                              (6) 

 
2

11

2

β

ε ε

j j
Z enE u

x x

∂ ∂
+ = −

∂ ∂
.                                                  (7) 

 

Equation (3) describes the motion of acoustic mode in an 

IISP. Here, C is the elastic constant, ρ  is the mass density, aΓ  

is the acoustic damping parameter, and β  is the piezoelectric 

coefficient of IISP crystal. ( , )u x t  is the lattice displacement 

and it may be expressed as: ( , ) exp[ ( )]a au x t u i k x t= − ω . We 

assumed that the frequency of acoustic mode is much smaller 

than the frequency of pump wave, i.e. 0aω << ω . Equations (4) 

and (5) are the equations of motion expressing zeroth and first 

order oscillatory fluid velocities ( 0 j
v , 1 j

v ) of carriers with 

effective mass j
m  and charge j

Z e . ν  is the 

phenomenological carrier collision frequency and /
j j

Z q e=  is 

the charge state of electrons and colloids, which is the ratio of 

negative charges dq  resided over the colloidal grains to the 

charge e. The space charge field 1E  is determined by the 

Poisson equation (7) where ε is the dielectric constant of IISP 

medium. We have neglected the quantum diffraction effect; 

hence the charge density can be obtained from the potential 

through an algebraic equation [32] and Poisson equation 

should not be modified to include quantum contribution. In 

IISPs, the low frequency acoustic wave ωa  as well as the 

pump electromagnetic wave 0ω  produce density perturbations 

( 1n ) at the respective frequency in the medium which can be 

obtained by using the standard approach [35]. Using equations 

(2) to (7) and considering the low-frequency perturbations ( sn ) 

to be proportional to exp[ ( ω )]
a a

i k x t− , while 0n  and 0v  vary 

as 0exp( ω )i t− , one gets: 

 
2 2

0 12 2 '21 1

12 2

β
(ω ) ν

ε

j j jl e

pj Fj j j

j

Z en nn n u
k V n E

t m xt x

∂∂ ∂ ∂
+ + + + = −

∂ ∂∂ ∂
   

 (8) 

 

where 
0

j

j

j

Z e
E E

m

 
= −   

 
, ' 1 γ

Fj Fj ej
V V= + , 

2 2

γ
8

ej

j B Fj

k

m k T
=
ℏ

. 

 
In the derivation of equation (8), we have neglected the 

Doppler shift under the assumption that 0 0ω ν kv>> > ; 

1/ 2
2 2

0
( )

ω
ε

j j

pj

j

Z n e

m

 
=   
 

 is the plasma frequency of carriers. 

The perturbed carrier density 
1 j

n  produced in the medium 

has two components known as slow and fast (
1 j sj fj

n n n= + ). 

The slow component [ exp ( ω )]
sj s a

n i k x t∝ −  is associated with 

the acoustic phonon mode (ω ,a ak ) while the fast component 

[ exp ( ω )]
fj s s

n i k x t∝ −  is associated with the high frequency 

scattered electromagnetic wave (ω ,s sk ), arising due to the 

parametric interaction. These waves will propagate at 

generated frequencies ωa  and 0ω ωa±  respectively. We 

assume that the energy transfer between the pump and 

produced signal and idler waves satisfy phase matching 

conditions which are: 0ω ω ωs a= +  and 0 s a
k k k= +
� � �

. We have 

restricted ourselves only to the Stokes component ( 0ω ωa− ) of 

the scattered electromagnetic waves. By resolving equation (8) 

into two components (fast and slow) under the rotating wave 

approximation, we obtain the respective coupled equations as: 

 
2 *

2 2 ' 2

2
ν (ω )

fj fe sj

pj Fj sj j

n n n
k V n E

t xt

∂ ∂ ∂
+ + + = −
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                  (9a) 

 
2 *2

02 2 '2

2 2

β
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ε

sj j j fjse

pj Fj sj j

j

n Z en nn u
k V n E

t m xt x

∂ ∂∂ ∂
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∂ ∂∂ ∂
                  

                                                                                       (9b) 

 

subscripts s and f stand for slow and fast components, 

respectively. Asterisk (*) represents complex conjugate of the 

quantity. 

It is clear from equations (9a) and (9b) that the slow and 

fast components of the density perturbations are coupled to 

each other via the pump electric field. 

 

2.1  Second-order optical susceptibility due to electrons 

In order to avoid complexities separate formulations have 

been done for electrons and charged colloids in the IISPs. We 

obtain slow component sn  for electron as: 

 
2 3 *

* 10

2 2 2

β
[ ]

ρε(ω 2 ω )

e

s

a a a a

in Z e k E
n R

m k v i

−−
=

− − Γ
                              (10) 

 

where  
22

2 2 '2 2

2 2 ' 2 2
(ω ) ω νω

(ω ) ω νω

e

pe Fe a a

pe Fe s s

k E
R k V i

k V i

 
 = + − − −
 + − +
 

 

The resonant component of the induced current density 

due to density perturbations oscillating at the acoustic 

frequency is given by 

 
*

1 0s e
J n Z ev= − .                                                               (11) 

 

Using equation (10) we have 

 
2 *

0 1

1

0

ε ω
[ ]

2 ω ω

e pe

a a

iZ e Ak E E
J R

m

−=
Γ

.                                          (12) 

 

where 2 2 2

a
A K k v= , 

2
2 β

ε
K

C
= , 

0ω ω ωs a= − ,  

 

0

0
(ν ω )

e
E

v
i

=
−

, and 

1/ 2
2

ω
ε

e

pe

e

n e

m

 
=  
 

 electron plasma 

frequency.  

 

In deriving equation (12), the components of oscillatory 

electron fluid velocity 0v  are obtained from equation (4). 

Henceforth, the induced polarization will be 

 
2 *

0 1 1 (2) *

0 0 1

0

ε ω
[ ] ε χ

2 ω ω ω

e pe

e e

a a s

Z e Ak E E
P R E E

m

−
−

= =
Γ

.                    (13) 
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From equation (13), one may obtain the lowest order 

nonlinear susceptibility including quantum mechanical effects 

as: 

 
2 *

1 0 1(2) 1

0

ε ω
χ [ ]

2 ω ω ω

e pe

e

a a s

Z e Ak E E
R

m

−
−

=
Γ

.                                      (14) 

 

Equation (14) gives the real (2)Re(χ )
e

 and imaginary 
(2)Im(χ )
e

 parts of susceptibility as: 

 
2

1(2)

0

ε ω
Re(χ ) [ ]

2 ω ω ω

e pe

e

a a s

Z e Ak
X

m

−
=

Γ
                                       (15a) 

 2

1(2)

0

ε ω
Im(χ ) [ ]

2 ω ω ω

e pe

e

a a s

Z e Ak
Y

m
=

Γ
,                                       (15b) 

 

in which 

 

24 2 2 2 2 2

2 1 2 1

22 2 2 2 2 2 2 2

1 2 2 1

δ δ δ δ ω ν

[δ δ ω ω ν ] [δ ω ν δ ω ν]

s

s a a s

k E
X

k E

− +
=

+ − + −
 

 
24 2 3 2

2

22 2 2 2 2 2 2 2

1 2 2 1

δ ω ν ω ν ω ω ν

[δ δ ω ω ν ] [δ ω ν δ ω ν]

a s a s
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k E
Y
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It is seen that both dispersion as well as amplification 

characteristics of acoustic wave are effectively modified in 

quantum plasma through 
2 2 2 '2 2

1
δ ω ω

pe Fe a
k V= + −  and 

2 2 2 '2 2

2
δ ω ω

pe Fe s
k V= + − . 

 

2.2  Second-order optical susceptibility due to implanted 

colloids 

Due to high mobility of drifting electrons colloidal grains 

tend to acquire a net negative charge through sticking 

processes. On neglecting the higher harmonics, the Stokes 

mode of the scattered component at 0(ω ω )a−  can be obtained 

from equations (7) and (9) as: 

 

 

                                                                          

2 3 *

* 10 1
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[ ]
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d d

s
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in which 

 

222 2 2 4 2
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2 2 2 2 4 2
20
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ℏ

ℏ
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The Stokes component of the induced current density due 

to charged colloids is given by 

 
*

0d s d dJ n Z ev= − .                                                             (17) 

 

Substituting equation (16) into equation (17), we get 
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10 0 1
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2 ω ω

d d

d

d a a

iZ e n AkE E
J V

m

−=
Γ

.                                          (18) 

 

where 2 2 2

aA K k v= , 0ω ω ωs a= − ,  

           
2

2 β

ε
K

C
= ,  and 0

0
( ω )

d

d

E
v

i
=

−
. 

 

Using the relations between current density and 

polarization discussed in previous chapters, we get the induced 

polarization due to negatively charged colloids as: 

 
3 3 *

1 (2) *0 0 1

0 0 12

0

[ ] ε χ
2 ω ω ω

d d

d

d a a s

Z e n AkE E
P V E E

m

−−
= =

Γ
.                     (19) 

 

 

 

From equation (19), one may obtain the second order 

nonlinear susceptibility due to colloids including quantum 

mechanical effects as: 

 
3 3

(2) 10

2

0 0

χ [ ]
2ε ω ω ω

d d

d

d a a s

Z e n Ak
V

m

−−
=

Γ
.                                         (20) 

 

Equation (20) also exhibits the real (2)
Re[χ ]d

 and 

imaginary (2)
Im[χ ]d

 parts of total optical nonlinear 

susceptibility due to implanted colloids as: 

 
3 3

(2) 10

2

0 0

Re[χ ] [ ]
2ε ω ω ω

d d

d

d a a s

Z e n Ak
V

m

−−
=

Γ
                                  (21) 

 
(2)

Im[χ ] 0d = .                                                                  (22) 

 

Equation (21) represents the real part of susceptibility due 

to implanted charged colloids, but the imaginary part is found 

to be equal is zero. 
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2.3  Total susceptibility of medium 

Addition of equations (14) and (20), gives the total optical 

nonlinear susceptibility of the medium including quantum 

mechanical effects as: 

 
2 2

(2) 1 11

0

ω ωε
χ [ ] [ ]

2 ω ω ω

e pe d pd

t

a a s e d

Z Ze Ak
R V

m m

− −
 

= + 
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,          (23) 

 

where 

1/ 2
2 2( )

ω
ε

d d

pd

d

Z n e

m

 
=  
 

 is dust plasma frequency.  

 

Real (2)
Re[χ ]t

 and imaginary (2)
Im[χ ]t

 parts of the total 

nonlinear susceptibility of the medium is given as: 

 
(2) (2) (2)

Re[χ ] Re[χ ] Re[χ ]t e d= +  
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ω ωε
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(2) (2) (2)

Im[χ ] Im[χ ] Im[χ ]t e d= +  

 

            

2

1

0

ωε
[ ] 0

2 ω ω ω

e pe

a a s e

Z eAk
Y

m

 
= + 
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.                     (24b) 

 

It may be inferred from equation (24) that the 

susceptibility due to implanted charged colloid (2)
χ d

 makes an 

important impact on the real part of total crystal susceptibility, 

whereas the imaginary part of total crystal susceptibility 

(equation (24b)) is produced only due to majority charge 

carriers (electron) and implanted charged colloids does not 

induce any modification in it.  

QE of the particles mainly depends upon their size and 

mass. Generally larger size and mass will give rise to smaller 

QEs. QE on electron dynamics are non-variant due to constant 

size and mass of the electrons but QE on colloids may become 

variant due to available variations in size and mass of colloids. 

The grains in colloidal plasma are found in a great variety of 

sizes, masses and charges. Hence the study of colloidal size 

distribution and its contribution to quantum correction of 

second order optical nonlinearities is inevitable. 

 

2.4  Colloidal size management: Polynomial size 

distribution function 

In equilibrium, the plasma is quasi-neutral and the quasi-

neutrality condition in the basic state is given by 

 

0 0 0

0 0

1i d d

e e

n Z n

n n
= + ,                                                           (25) 

 

where 0in , 0en , 0dn  and 0dZ  are the number densities of 

unperturbed ions, electrons, colloid grains and charges residing 

on the colloid respectively. In this proposed study we have 

considered that the charge on the colloid particles is only due 

to electron attachment. 

The size and shape of colloid grains in plasma will be 

different, unless they are man-made. The dust particles in 

laboratory dusty plasmas may be mono-sized. The particles 

that are implanted can be made of either dielectric or 

conducting materials with a very narrow distribution of 

diameters. Such narrowly sized particles are termed mono-

dispersed. 

In the charge neutrality condition when 
0 0 0/d d eZ n n  is 

much smaller than one, the colloid particles can be considered 

as isolated colloidal grains and charge residing on grain 

depends only on the colloid particle radius. The differential 

number density of charged colloid grain is suggested with a 

characteristic radial parameter r  [36]. 

 

0 0 ( )d dn n r dr= .                                                              (26) 

 

Here 
0 ( )dn r dr  denotes the number of charged colloid 

grain with radius r  that is expected per unit volume.  

The colloid grain effectively collect electrons and it 

measured in units of electron charge. When grain size r  is 

much smaller than the Debye radius λD
, we can express the 

mass and charge of a colloid particle with characteristics radial 

parameter by 

 
3

d mm k r=                                                                       (27) 

 
d zZ k r= ,                                                                       (28) 

 

where 0 04πε
z

V
k

e
= , 

4πρ

3

d

mk = , 
0V  is the electric surface 

potential at equilibrium, ρd
 is the mass density of the colloid 

grains (assumed to be constant and equal for all grains) and 
0ε  

is the vacuum permittivity.  

It is assumed that the colloids are of multiple sizes and are 

smaller than the wavelength understudy as well as electron 

Debye radius. Hence they can be treated as negatively charged 

point masses. The colloid size distribution can be an arbitrary 

function in laboratory or even in the space plasma. The 

distribution function depends on many physical factors and on 

the environment. It has been widely accepted that the size 

distribution can be described by a power law distribution 

(PLD) in space plasma [37] and a Gaussian distribution in 

laboratory plasma, [38]. But generally, the colloid size 

distribution function does not exactly satisfy either a power 

law distribution or a Gaussian distribution. In our work we 

consider a polynomial expressed distribution of colloid 

particles in quantum colloidal plasma medium consisting of 

different size colloids. The differential polynomial expressed 

distribution function is of the form 

 
2

0 1 2( ) [ .......]n r dr a a r a r dr= + + + ,                               (29) 

 

where r is the radius of colloids in a given range [rmin , rmax 

], a0 a1 a2 a3 are all constant.  

It satisfies the following equation: 

 
max

min

( )

r

tot

r

N n r dr= ∫ ,                                                            (30) 

 



RP Current Trends In Applied Sciences 

 

 

Page | 25  

 

where totN  is the total number density of colloid grains. 

Outside the limits minr r<  and maxr r> , we use ( ) 0n r = . We 

assume that the colloid size distribution is given by equation 

(28) and (30) substituting into equation (20), we obtain 

 

 

                                                                   

max max

min min

33
(2) 1

2 3

0 0

( )
χ [ ]

2ε ω ω ω

r r

z

d

a a s mr r

kAe k n r
dr Z dr

k r

−−
=

Γ∫ ∫ ,                                                        (31) 

 

in which 

 

22222 4 2
2

3 2 6 222 4 2

3 2 6

2( )
ω

ε 4 2( )

ε 4

j

dB Fdz

a

m m m B Fdz

m m m

k Ek k Tke n r k
Z

k r k r k r k k Tke n r k

k r k r k r

 
 
  

= + + − −  
   
 + +  

   

ℏ

ℏ

. 

 

 

Thus the modified total optical nonlinear susceptibility 

considering multiple size colloids managed by polynomial size 

distribution function becomes 

 
max

min

(2) (2) (2)[χ ] χ χ

r

t M e d

r

dr= + ∫ .                                               (32) 

 

Therefore for uniform size colloids equation (32) can be 

conveniently modified by using relations (26) to (28) to get 

total nonlinear optical susceptibility as 

 
(2) (2) (2)

[χ ] χ χt U e d= + .                                                        (33) 

 

It may be inferred from equation (32) that the total crystal 

susceptibility is influenced and modified by the presence of 

implanted metal colloids and their distribution; hence colloids 

and their size distribution are found responsible for the 

modification in dispersion characteristics of the scattered wave 

in a parametric process. 

  

3.  Results and discussion 

To get some numerical appreciation, we consider that an 

n-InSb crystal is irradiated by a 10.6 µm CO2 laser (both cw 

and pulsed beams depending on the intensities required). 

 

Table 1: Material parameters for n-InSb/CO2 laser system. 

Parameter Symbol Units Value 

Crystal mass density ρ  kg m-3 5.8×103 

Piezoelectric coefficient β  Cm-2 0.054 

Acoustic damping parameter aΓ  s-1 2×1010 

Acoustic wave velocity av  ms-1 4×103 

Acoustic wave frequency aω  s-1 2×1011 

Stokes wave frequency sω  s-1 1.77×1014 

Pump wave frequency 0ω  s-1 1.78×1014 

Electron collision frequency eν  s-1 3.5×1011 

Electron’s effective mass M (× m0) 0.014 

Electron;s rest mass m0 kg 9.1×10-31 

Colloids mass md kg 1.67×10-27 

 

The physical parameters used are displayed in Table 1. 

Using these parameters, we have performed qualitative as well 

as quantitative analysis of colloidal size distribution effect on 

parametric interaction in IISPs.  
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Figure 1: Variation of real part of total susceptibility 

(2)
Re[χ ]e

 with 

pump field amplitude 
0E  for uniform colloids (0.5 nm radius) plasma 

medium for the cases: (i) excluding QEs, and (ii) including QEs. 

 

Figure 1 shows the variation of real part of total crystal 

susceptibility (2)
Re[χ ]t

 with pump field amplitude 
0E  in the 

presence and absence of quantum correction term. Here to 

calculate total crystal susceptibility (2)
Re[χ ]t

 we have 

considered uniform colloids having radius 0.5 nm. The 

quantum correction shows the effective modification in total 

crystal susceptibility. The shape of both the curves is identical. 

The magnitude of (2)
Re[χ ]t

 first increases with 
0E  reaches a 

maximum value. The value of 
0E  at which one gets maximum 

magnitude of (2)
Re[χ ]t

 shifts towards higher side due to the 

presence of quantum correction but the maximum possible 

magnitude of (2)
Re[χ ]t

 reduces due to the presence of quantum 

correction. A little departure from this point sharply reduces 

the value of (2)
Re[χ ]t

, reaches to zero, crosses over to negative 
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value and reaches to a minimum. Again, the magnitude of 
0E  

at which one gets minimum (2)
Re[χ ]t

, shifts towards higher 

point due to the presence of quantum correction term. Beyond 

this point (2)
Re[χ ]t

 starts increasing and saturates towards 

higher values of 
0E . In the saturation region quantum 

correction becomes negligible or vanishes. The positive and 

negative values of (2)
Re[χ ]t

 may be used to determine 

wavelength and frequency conversion and to the self-focusing 

and self defocusing phenomena. It can also be envisaged that a 

practical demonstration of the above kind of parametric 

dispersion may lead to the possibility of observation of group 

velocity dispersion in IISPs and the effect of quantum 

correction on this dispersion characteristics. 
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Figure 2: Variation of real part of total susceptibility (2)

Re[χ ]e
 

with electron concentration 0n  of implanted colloids in 

uniform colloidal plasma medium for the cases: (i) excluding 

QEs, and (ii) including QEs. 
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Figure 3: Variation of real part of total susceptibility 

(2)
Re[χ ]e

 with 

radius r  of implanted colloids in uniform colloidal plasma medium 

for the cases: (i) excluding QEs, and (ii) including QEs. 

Figure 2 depicts the variation of real part of total 

susceptibility (2)
Re[χ ]t

 with charged colloids number density 

with and without QEs for uniform sized colloidal medium. QEs 

make the sufficient difference with total crystal susceptibility 

as seen from curve (b) of this figure. The total crystal 

susceptibility in presence of quantum correction for 

sufficiently lower number density has negative values but 

without quantum correction crystal susceptibility is always in 

positive regimes. 

Figure 3 envisages the variation of (2)
Re[χ ]t

 with radius of 

colloids ranging from 0.1 to 1 nm. The formulation for real 

part of total crystal susceptibility (2)
Re[χ ]t

 is done by 

considering the medium consisting of uniform size colloids. 

Real part of total crystal susceptibility (2)
Re[χ ]t

 decreases as 

we increase the radius of implanted particle till it approaches 

lattice spacing (≈ 0.6 nm) and beyond this value susceptibility 

becomes saturated for both the cases, i.e. in presence and 

absence of QEs. For Colloids with radius more than the lattice 

spacing (≈ 0.6 nm), the effect of quantum correction vanishes. 

QEs mainly depend on the mass and size of implanted colloids. 

The larger mass and size will give rise to smaller QEs. It is also 

evident from the fact that magnitude of quantum correction 

term lies in the range 3.3×1025 – 1.5×1023 till radius of the 

implanted colloids reaches to lattice spacing. Beyond lattice 

spacing (r > lattice spacing) quantum correction term decreases 

effectively up to 3.3×1022. The quantum correction effectively 

modifies the values of real part of total crystal susceptibility 
(2)

Re[χ ]t
 in IISPs. In our study, it is observed that the 

magnitude of quantum correction term gradually decreases 

with increase in the radius of implanted colloids in IISPs. 

Hence, to study quantum correction on parametric dispersion 

characteristics the radius of the implanted ions should be kept 

less than the lattice spacing of the crystal under study. 
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Figure 4: Variation of real part of total susceptibility 
(2)

Re[χ ]e
 with 

pump electric field 
0E  for the cases: (i) uniform size colloids, and (ii) 

multiple size colloids. 

 

Figure 4 shows the variation of real part of total crystal 

susceptibility in IISPs with uniform size colloids and multiple 
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size colloids. The differential polynomial expressed 

distribution function is used for calculating the effect of 

multiple size colloids in IISPs. Pump field dependent 

parametric dispersion characteristics are found with distinct 

anomalous regime. It is observed that in both the cases 

magnitude of second order susceptibility is positive as well as 

negative under anomalous regime. For 7

0 1.25 10E < × Vm
-1

, 
(2)

Re[(χ ) ]t M
, (2)

Re[(χ ) ]t U
 are both positive quantities which 

initially increases and then achieves a maximum value 

simultaneously. A slight tuning in 0E  beyond this point both 

the susceptibilities decrease very sharply, enter the negative 

quadrant and achieve the minimum value at about 
7

0 1.25 10E ≈ × Vm
-1

. With further increase in the value of 0E , 

both the susceptibilities increase sharply and saturate at larger 

values of electric field amplitude 0E . At the saturation regime 

susceptibility due to multiple size colloids (2)
Re[(χ ) ]t M

 is 

unable to achieve the positive value again. The magnitude of 

susceptibility of multiple size colloids medium (2)
Re[(χ ) ]t M

 is 

always found less than the magnitude of (2)
Re[(χ ) ]t U

. 
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Figure 5: Variation of real part of total susceptibility 

(2)
Re[χ ]e

 with 

wave number k  for the cases: (i) uniform size colloids, and (ii) 

multiple size colloids. 

 

Figure 5 shows the variation of real part of total crystal 

susceptibility with wave number k  in the cases of uniform size 

colloids medium and multiple size colloids medium. On 

increasing the wave vector, the magnitude of (2)
Re[(χ ) ]t M

, 
(2)

Re[(χ ) ]t U
 increase initially and achieves a maximum 

positive value simultaneously at about 75.8 10k ≈ × m
-1

. 

Beyond this point both the quantity decreases very sharply and 

achieves a minimum value at about 76.7 10k < × m
-1

 

sequentially. A proper selection of wave vector and grain 

radius range can enable one to achieve either positive or 

negative significantly enhanced parametric dispersion in IISPs. 

The positive and negative values of total crystal susceptibility 

are used to determine wavelength and frequency conversion 

and can be directly related to the self-focusing and self-

defocusing phenomena. It can also be envisaged that a practical 

demonstration of the above kind of parametric dispersion may 

lead to the possibility of observation of group velocity 

dispersion in IISPs. The polynomial expressed function for 

colloidal size distribution helps in obtaining the modified 

dispersion characteristics which may be utilized in the 

fabrication of microelectronic devices. 

 

4.  Conclusions 

The nature of the parametric dispersion characteristics of 

IISPs arising from the real part of total susceptibility, viz. 
(2) (2) (2)

Re[χ ] Re[χ ] Re[χ ]t e d= +  of a piezoelectric semiconductor 

has been reported. The principle objective of the present 

analysis is to establish the potentiality of the dependency 

quantum correction term on colloidal size during parametric 

dispersion process and examine the colloidal size distribution 

effect on IISPs through QHD model of plasmas. The presence 

of different sized negative-charged colloids in the IISPs 

modified the dispersion properties of the shear acoustic waves 

arising due to the application of pump electric field 0E . Proper 

selection of the range of colloidal radii may enable one to 

achieve improved parametric dispersion characteristics in 

IISPs. The presence of colloids does not contribute towards 

growth of the signal mode. QHD model is the extended version 

of hydrodynamic model which includes the quantum correction 

term which may successfully applied to study the nonlinear 

optical process in IISPs. The resonance between quantum 

correction term and electron plasma frequency 
2 2 '2(ω )
pe Fe

k V+  

and dust plasma frequency 
2 2 '2(ω )
pd Fd

k V+  is responsible for all 

the possible changes in parametric characteristics studied. In 

present study it is found that QEs on colloids is inversely 

proportional to size, smaller colloids induce larger QEs. QEs 

on colloids are more effective for certain size of colloids. In 

our case the limiting size of ion implanted colloids is 0.7 nm 

which is equal to lattice spacing of the medium. The uniform 

and multiple size colloid grains and electron dynamics are 

influenced by Bohm potential in IISPs via QHD model. 

Inclusion of QEs in QHD model via Bohm potential is seen to 

play a vital role in the colloid size distribution effect. QEs 

modify the optical parametric characteristics of IISPs. The 

quantum correction through Bohm potential effectively 

modifies the wave propagation characteristics in presence of 

uniformly sized colloids in the medium. 
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