
RP Current Trends In Engineering And Technology (e-ISSN: 2583-5491) 
Vol. 4, No. 3 (July – September 2025) pp. 36–45 
 
  

 

Cite this article: D. Sisodia, V.K. Sharma, R. Joshi, H. Arya, T.K. Bhatt, Developing an automated computational genomics 
pipeline for breast cancer detection using NGS, RP Cur. Tr. Eng. Tech. 4 (2025) 36–45. 
 

Original Research Article 

 

Copyright: © 2025 by the authors. Licensee Research Plateau Publishers, India 
This article is an open access article distributed under the terms and conditions of the  
Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 

 

Developing an automated computational genomics pipeline for breast cancer 
detection using NGS 
 
Dilip Sisodia1,2,*, Virendra Kumar Sharma2, Rohit Joshi1, Hemant Arya3, Tarun Kumar Bhatt3  
 

1Engineering College, Ajmer, Rajasthan – 305025, India 
2Bhagwant University, Ajmer, Rajasthan – 305004, India 
3Department of Biotechnology, Central University of Rajasthan, Bandarsindri, Ajmer – 305817, India 
*Corresponding author, E-mail: sisodia.dilip @ecajmer.ac.in 
 

ARTICLE HISTORY 
Received: 26 March 2025 
Revised: 1 July 2025 
Accepted: 1 July 2025 
Published: 3 July 2025 
 

KEYWORDS 
Breast Cancer; 
Computational Biology; 
Next-Generation 
Sequencing (NGS);  
Machine Learning;  
Genomic Mutations. 

ABSTRACT 
Breast cancer is a malignant tumor that develops in the breast tissue due to uncontrolled cell growth. It 
is a significant cause of death worldwide in cancer patients and detecting it early can greatly improve 
survival rates. This research proposes an automated bioinformatics pipeline that leverages Next-
Generation Sequencing (NGS)data to detect genetic mutations associated with breast cancer by 
comparing them with healthy human genomes. The focus is on the BRCA1 and BRCA2 genes to evaluate 
the pipeline’s effectiveness. The research follows a structured bioinformatics workflow, starting with 
data acquisition from the NCBI SRA database. Preprocessing steps using SRA Toolkit, Fast QC, and 
Trimmomatic ensure the removal of low-quality reads. Sequence alignment is performed with Bowtie2, 
while SAM tools and BCF tools are used for variant calling to detect genetic mutations. Finally, SnpEff 
annotates these mutations and evaluates their biological significance. Genetic features are extracted 
and structured into a dataset to develop a predictive model, and they are analyzed using Python and 
machine learning techniques such as Random Forest and Logistic Regression. The classification models 
are assessed based on accuracy, demonstrating their effectiveness in predicting breast cancer. The 
results reveal a strong correlation between genetic mutations and breast cancer risk, offering valuable 
insights for genomic-based diagnostics. This study introduces a scalable and reproducible approach to 
genomic data analysis for breast cancer prediction. The proposed method can support personalized 
medicine by enabling early detection and risk assessment for high-risk individuals. 

 
1.  Introduction 

Breast cancer is one of the most common and life-

threatening cancers worldwide. According to the World Health 

Organization (2020), approximately 2.3 million new cases and 

685,000 deaths were recorded in 2020 [1]. Despite improved 

mechanisms of diagnosis and treatment, delayed diagnosis of 
breast cancer remains a source of worry, resulting in 

unfavorable prognosis and death. 

Genetic mutations significantly contribute to breast cancer 

susceptibility, with alterations in key tumor suppressor genes 

like BRCA1 and BRCA2 [2] being strongly linked to increased 

risk.These genes play a crucial role in repairing DNA. When 

they become dysfunctional, the risk of developing breast and 

ovarian cancer at an early age increases, often leading to a 

more aggressive form of the disease. 

Research has indicated that BRCA1 and BRCA2 

mutations contribute to 5-10% of all breast cancer [3]. 
Individuals with deleterious alterations in these genes have a 

45-65% lifetime risk for breast cancer, while the general risk 

for the rest of the population is 12%. These mutations are also 

associated with some tumor characteristics, such as high-grade 

tumors, triple-negative breast cancer (TNBC) subtypes, and an 

increased likelihood of having cancer in both breasts. Several 

studies have been centered on identifying the mutations 

through sophisticated sequencing techniques and computer 

software to enhance early diagnosis and risk assessment. 

Broad use of conventional statistical models, i.e., the Gail 

Model, BOADICEA [4], and Tyrer-Cuzick Model, has been 

used to predict the risk of breast cancer. These models make 

use of family history, hormonal, and lifestyle variables in 

estimating the individual's risk of developing breast cancer. 
These models are not entirely reliable when it comes to 

predicting the risks, particularly in ethnically diverse 

populations, and do not possess all the genetic information. 

Current methods of genetic testing, such as polymerase chain 

reaction (PCR) tests [5] and microarray analysis, are not good 

at identifying new or rare variants with high specificity. 

Recent advancements in Next-Generation Sequencing 

(NGS) and machine learning (ML) have enhanced genetic 

marker analysis and cancer risk prediction [6, 7]. NGS can 

sweep whole genomes entirely for single nucleotide 

polymorphisms (SNPs) [8], insertions/deletions, and structural 
rearrangements with high precision. Random Forest and 

Logistic Regression algorithms can use extensive genomic data 

to distinguish patterns of cancer, providing improved diagnosis 

accuracy over earlier methods. Integrating NGS data and ML 

classification facilitates the identification of risks in an 

individual, facilitating early detection and targeted treatment in 

high-risk individuals. 

This study proposes an automatic bioinformatics pipeline 

for identifying the genetic mutations causing breast cancer, 
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emphasizing BRCA1 and BRCA2. The procedure starts with 

retrieving raw sequence data from the NCBI SRA database, 
with quality filtering and cleaning performed utilizing SRA 

Toolkit [9], Fast QC [10], and Trimmomatic [11]. Bowtie2 

[12] performs sequence alignment, and SAM tools and BCF 

tools [13] are utilized to identify mutations. These mutations 

are also annotated utilizing SnpEff [14] to determine whether 

they have any biological significance. The identified genetic 

features are then checked utilizing machine learning models to 

determine their effectiveness in diagnosing breast cancer. 

This approach is a bioinformatics and machine learning 

combination [15] to improve breast cancer's accuracy and risk 

prediction. The approach is scalable, reproducible, and 
accommodates large genomic data, thus an asset in precision 

medicine. This study complements the advances in precision 

oncology through a more data-intensive approach to early 

detection and breast cancer risk stratification. 
 

1.1  Contributions of the research 
 

This research offers a transformative approach to breast 

cancer detection and risk assessment by integrating 

bioinformatics with machine learning, significantly enhancing 

early detection and personalized risk evaluation. By leveraging 

Next-Generation Sequencing (NGS) and advanced 

classification models, the proposed method ensures higher 

accuracy in identifying BRCA1 and BRCA2 mutations, 

reducing false positives and negatives compared to traditional 

diagnostic models. This enables early intervention, improving 

patient outcomes and lowering mortality rates. Furthermore, 
the study advances precision medicine by tailoring risk 

assessments to a patient’s genetic profile, supporting targeted 

therapies such as PARP inhibitors [16]. The automated 

pipeline provides a cost-effective, scalable, and efficient 

solution for large-scale genetic screening, making high-quality 

risk assessment more accessible. Ultimately, this research 

empowers healthcare providers and patients with data-driven 

insights, facilitating informed decisions on preventive 

measures, lifestyle modifications, and personalized medical 

interventions to mitigate breast cancer risk. 
 

2.  Literature review 
 

Breast cancer is one of the most prevalent forms of cancer 

worldwide, and early detection plays a crucial role in 

improving survival rates. Over the years, various diagnostic 
techniques have been developed, ranging from traditional 

clinical methods to advanced computational approaches. This 

section provides a review of existing literature on breast cancer 

detection methods, highlighting their strengths, limitations, and 

the role of Next-Generation Sequencing (NGS) and Machine 

Learning (ML) in enhancing diagnostic accuracy. 

Traditional Breast Cancer Detection Methods: Breast 

cancer detection has traditionally relied on imaging techniques 

such as mammography [17], ultrasound [18], and MRI [19]. 

Mammography remains the gold standard for breast cancer 

screening due to its widespread availability and effectiveness 
in detecting microcalcifications associated with early-stage 

cancer. However, its accuracy declines in women with dense 

breast tissue, leading to false negatives and delayed diagnosis. 

Ultrasound is often used as a supplementary screening tool, 

particularly for dense breast tissue, but its diagnostic accuracy 

is highly dependent on the skill of the radiologist. MRI, on the 

other hand, provides high-resolution imaging and is 

particularly useful for high-risk patients, but its high cost and 

long scan times limit its widespread use. Apart from imaging 

techniques, biopsy procedures, such as fine needle aspiration 

(FNA) [20] and core needle biopsy, provide definitive cancer 
diagnosis by extracting tissue samples for histopathological 

examination. While highly accurate, these methods are 

invasive and may cause patient discomfort. Additionally, 

clinical breast examinations (CBE) [21] are often performed by 

healthcare professionals, but their accuracy is subjective and 

varies depending on the examiner’s expertise [22, 23]. 

A summary of these diagnostic methods is presented in 

Table 1, highlighting their advantages and limitations. 

 
Table 1:.Existing diagnostic method, advantages, and limitations. 

Diagnostic method Advantages Limitations 

Mammography[17] Standardized screening methods used globally Less effective for dense breast tissue 

Readily available and cost-effective Possibility of false alarms and missed detections 

Detects microcalcifications and subtle tissue changes  

Ultrasound[18] No radiation exposure, making it safer for repeated use Accuracy depends on the technician'sskill 

Suitable for evaluating dense breast tissues Limited penetration depth, reducing effectiveness for 
deeper tissues 

Helps differentiate between solid lumps and cysts This can lead to inconclusive results 

MRI (Magnetic 

Resonance Imaging)[19] 

Highly detailed imaging with a strong sensitivity to 

abnormalities 

High-cost procedure 

No ionizing radiation is involved Requires long scanning time 

Applicable in cases with inconclusive mammograms Specialized interpretation skills 

Biopsy (Fine Needle 
Aspiration or Core 
Needle Biopsy)[20] 

Provides direct tissue sampling for conclusive 
diagnosis 

Invasive and may cause discomfort 

High accuracy in detecting cancerous cells Slight risk of complications like infection or bleeding 

 Sampling may not always capture the most affected 
area 

Clinical Breast 
Examination (CBE)[21] 

It is affordable and does not require specialized 
equipment 

Subjective results depend on the examiner’s 
experience 

Can detect lumps through physical examination Limited effectiveness for detecting small tumors 

Radiation-free method Not a definitive diagnostic tool 

GeneticTesting 
(BRCA1/BRCA2 
Testing)[22] 

Identifies individuals with a genetic predisposition to 
breast cancer 

This is only applicable to individuals with hereditary 
risk factors 

Enables proactive risk management and preventive 
measures 

It does not provide information on non-genetic breast 
cancer cases 
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3.  Proposed methodology 

The methodology adopted in this study follows a 

comprehensive and automated pipeline that processes raw 

sequencing data obtained from the NCBI Sequence Read 

Archive (SRA) [24]. This pipeline ensures a systematic 

approach to data preprocessing, variant calling, feature 

extraction, and machine learning model training, ultimately 

identifying the most effective predictive model for breast 

cancer classification. By leveraging high-throughput 

sequencing data, the study aims to establish a robust 

framework to detect key genetic variations associated with 
breast cancer, facilitating early diagnosis and precision 

medicine. 

Our proposed methodology is illustrated in Figure 1. The 

flowchart for this methodology outlines the sequential steps 

involved in breast cancer prediction using Next-Generation 

Sequencing (NGS) data and machine learning. It starts with 

data acquisition from the NCBI SRA database, followed by 

quality control and preprocessing to clean the sequencing data. 

The sequence alignment step maps read to the human reference 

genome, enabling variant calling to detect mutations. Next, 

variant annotation determines the functional impact of 

mutations, particularly in BRCA1 and BRCA2 genes. The data 

is then structured into features for machine learning models, 

which are trained using classifiers like Logistic Regression and 

Random Forest. Finally, results analysis and visualization 
evaluate model performance and identify key genetic markers 

associated with breast cancer. The pipeline ensures high 

accuracy, reproducibility, and scalability, contributing to 

personalized medicine and early cancer detection. 

 

 
 

Figure 1: Proposed approach workflow. 

 

3.1  Data acquisition and preprocessing 
 

The research begins by obtaining raw genomic data from 

the NCBI SRA [24], where datasets containing sequencing 

reads from breast cancer patients and healthy individuals are 

publicly available. Each dataset is associated with a unique 

SRA ID, which is used to retrieve the raw sequencing reads 

using the SRA Toolkit. These reads are typically stored in the 

SRA format, which is converted into the widely used FASTQ 

format to ensure compatibility with bioinformatics tools. The 

FASTQ files contain nucleotide sequences and their associated 
quality scores, essential for downstream processing. 

Once the sequencing data is retrieved, it undergoes quality 

control (QC) [25] assessment to ensure high data fidelity. This 

step is performed using Fast QC. This tool provides an in-

depth analysis of the quality of sequencing data, which is 

assessed using various parameters such as nucleotide base 

quality, GC percentage, duplication rates, and the presence of 

adapter sequences. Poor-quality reads, such as those with low 

Phred scores or excessive adapter content, are removed using 

Trimmomatic, which performs sequence trimming and filtering 

to retain only high-quality reads. This preprocessing step is 

crucial, as low-quality or contaminated reads can introduce 
errors in subsequent variant detection and affect the overall 

accuracy of the machine learning models. 
 

3.2  Sequence alignment and variant calling 
 

Following quality control, the cleaned after preprocessing, 

sequencing reads are mapped to the human genome reference 

(GRCh38) with alignment tools such as BWA (Burrows-

Wheeler Aligner) and Bowtie2, ensuring accurate positioning 

within the genome [26].  These tools map each sequencing 

read to its corresponding genomic location. The aligned 

sequencing data is stored in structured file formats, commonly 

known as SAM (Sequence Alignment Map) and BAM (Binary 

Alignment Map), facilitating downstream analysis. The BAM 

files serve as an essential intermediary step for identifying 

genetic variants, as they provide precise mapping information 
required for variant analysis. 

After alignment, variant calling is performed to detect 

genetic mutations associated with breast cancer. This is 

achieved using powerful variant calling tools such as SAM 

tools and BCF tools, which analyze the aligned sequences for 

detecting single nucleotide mutations that may indicate Genetic 

variations, including single nucleotide variants (SNVs) [27 ], 

insertions, and deletions (Indels), are documented in Variant 

Call Format (VCF) files [28]. These files provide detailed 

insights into each identified mutation, covering aspects such as 

genomic coordinates, sequence alterations, quality metrics, and 

sequencing depth. These variants are the core genetic features 
for distinguishing between cancerous and non-cancerous 

samples. 
 

3.3  Variant annotation and feature extraction 
 

To understand the biological significance of the detected 

mutations, variant annotation is performed using tools such as 

SnpEff or ANNOVAR [29]. These annotation tools categorize 

genetic variants based on their functional impact, identifying 

whether a mutation is benign, likely pathogenic, or pathogenic. 
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Key genes linked to breast cancer, such as BRCA1, BRCA2, 

TP53, HER2, and PIK3CA, [30] are given significant attention 
due to their critical involvement in tumor progression. 

Following annotation, the extracted genetic data is 

converted into a structured dataset suitable for machine 

learning model training. This dataset consists of features such 

as: 

 Mutation frequency in cancer-associated genes. 

 Functional impact scores, indicating whether a mutation is 

disruptive. 

 Genomic location data specifying where mutations occur. 

 Allele frequencies, measuring the prevalence of a mutation 

in the population. 
 

3.4  Machine learning model training and optimization 
 

After preparation, the dataset is divided into training and 

testing sets, generally maintaining an 80:20 ratio. This 

approach allows the model to learn from a significant portion 
of the data while keeping some unseen samples for validation. 

Various supervised machine-learning techniques are utilized to 

analyze genetic characteristics and categorize patients as 

having cancer or cancer-free. The models employed in this 

study include: 

 Logistic Regression (LR) [31]: A fundamental linear 

classifier for binary prediction tasks. 

 Random Forest (RF) [32]: Random Forest (RF) is an 

ensemble method that leverages multiple decision trees to 

enhance predictive accuracy and robustness. 
 

3.5  Model evaluation and performance analysis 
 

After training, the models are tested on unseen data to 

evaluate their performance. Several key performance metrics 

are used to assess their effectiveness. 

The most effective model in this research achieved an 
accuracy greater than 95%, signifying a highly dependable 

classification system. Random Forest exhibited the best 

predictive performance, surpassing other models in detecting 

cancer-related genetic mutations with high precision and recall. 

4.  Results and discussion 
 

This research presents a bioinformatics pipeline for 

detecting breast cancer-related genetic mutations using Next-

Generation Sequencing (NGS) data. The pipeline successfully 
processes sequencing data, identifies BRCA1 and BRCA2 

mutations, and applies machine learning models to classify 

samples based on cancer susceptibility. The first step in the 

breast cancer detection pipeline is data acquisition, which 

involves retrieving high-throughput sequencing data from 

publicly available genomic databases. The NCBI Sequence 

Read Archive (SRA) is the primary source for obtaining raw 

sequencing data from breast cancer patients and healthy 

individuals. This data acquisition process is essential for 

ensuring a diverse and representative dataset for variant 

analysis and machine learning-based classification. 
Figure 2 illustrates the SRA Toolkit, which downloads raw 

sequencing reads using specific SRA accession IDs linked to 

breast cancer genomic datasets. The fastq-dump command 

converts SRA files into FASTq format, which serves as the 

standard input for most bioinformatics analyses. This 

transformation ensures that sequencing reads are available for 

quality assessment and further processing. The dataset 

comprises whole-genome sequencing (WGS) and whole-

exome sequencing (WES) data, enabling an in-depth 

exploration of genomic variations associated with breast cancer 

[33]. 

During data retrieval, metadata associated with each 
sample (such as sequencing platform, read length, and 

experimental conditions) is extracted to assess data 

consistency. Large-scale genomic datasets, often in terabytes, 

are efficiently managed by parallelized downloads and 

compressed storage formats to optimize computational 

performance. The acquired sequencing data provides the 

foundation for identifying BRCA1 and BRCA2 mutations, 

ensuring that subsequent steps in the pipeline can accurately 

detect and classify breast cancer-related variations. 

 

 
 

Figure 2: Downloading Dataset. 
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Figure 3:  Dataset Information. 

 
Figure 3 contains the dataset used in this study, which 

comprises 52 samples with nine distinct features, including 

mutation counts for key breast cancer-related genes and variant 

types. The dataset is structured in a pandas DataFrame format, 

ensuring efficient data handling and processing. Below is a 

breakdown of the dataset fields and their significance: 

1. sample_name (object) – A unique identifier for each 

sample, representing individual patient or sequencing data 

records. 

2. BRCA1_mut_count (int64) – The count of mutations 

observed in the BRCA1 gene, a key indicator of breast 
cancer susceptibility. 

3. BRCA2_mut_count (int64) – The count of mutations in 

the BRCA2 gene, another critical gene associated with 

hereditary breast cancer risk. 

4. missense_count (int64) – The number of missense 

mutations, which lead to amino acid substitutions and 

potentially alter protein function. 

5. synonymous_count (int64) – The count of synonymous 

mutations, which do not change amino acid sequences but 

may impact gene expression. 

6. intron_count (int64) – The number of mutations occurring 

within intronic regions may influence gene regulation and 

splicing mechanisms. 

7. splice_count (int64) – The number of mutations affecting 

splice sites can result in abnormal mRNA processing and 

dysfunctional proteins. 

8. total_mutations (int64) – The cumulative count of all 

mutation types within a sample, providing an overall 

measure of genomic instability. 

9. label (int64) – The classification label indicates whether a 

sample is from a cancerous (1) or non-cancerous (0) source, 
enabling supervised learning-based analysis. 

 

The dataset provides a robust foundation for analyzing 
genetic mutations and their impact on breast cancer 

classification. BRCA1 and BRCA2 mutations [34] play a 

crucial role in risk assessment. In contrast, additional variant 

types (missense, splice-site, and intronic mutations) contribute 

to a deeper understanding of their functional implications.

 

 
Figure 4:  Per base sequence quality. 
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Figure 5: Per sequence quality scores. 

 

Figure 4 depicts FastQC [10], a tool designed for assessing 

sequencing data quality. FastQC reports generate various 

graphical representations of sequencing quality, such as per-

base sequence and per-sequence quality scores. These 

evaluations help determine whether the sequencing data meets 

the necessary quality standards for further analysis. Low-
quality readings are either filtered or trimmed to enhance 

accuracy. The FastQC tool delivers in-depth insight into 

sequencing quality, a critical step before conducting advanced 

genomic analysis. The two primary results obtained from 

FastQC include Per-Base Sequence Quality And Per-Sequence 

Quality Scores. 

This research uses several bioinformatics tools to process 

sequencing data, perform alignment, and detect genomic 

variations. Each tool plays a significant role in ensuring 

accurate and efficient breast cancer detection using genomic 

sequences. Trimmomatic is a widely used tool for trimming 
low-quality reads and removing adapter sequences from raw 

sequencing data. Since sequencing errors often accumulate at 

the ends of reads, Trimmomatic helps improve data quality by: 

 Removing adapters and primer sequences. 

 Trimming low-quality bases from read ends.  

This step ensures that only high-quality reads are retained 

for accurate downstream analysis. 

BWA is a powerful tool for aligning sequencing reads to a 

reference genome. In this study, BWA-MEM is used due to its 

efficiency in handling high-throughput sequencing data. Key 

features include: 

 Fast and accurate alignment of short and long reads. 

 Ability to detect structural variations. 

BWA ensures that sequencing reads are correctly mapped 

to the human genome, enabling accurate mutation detection. 

SAMtools is a software package used for managing and 

processing Sequence Alignment/Map (SAM) and Binary 

Alignment/Map (BAM) files [35]. After performing BWA 

alignment, SAMtools is used for: 

 Sorting and indexing BAM files to optimize data 

retrieval. 

 Filtering reads based on mapping quality. 

 Converting between file formats (SAM to BAM) for 

efficient storage and processing. 

This step is essential for preparing the aligned data before 
variant calling. 

BCFtools is a software tool designed for detecting Single 

Nucleotide Variants (SNVs) and small insertions/deletions 

(INDELs) [36] in aligned sequencing data. It provides several 

functions, including: 

 Variant calling to detect genetic mutations. 

 Filtering variants based on quality and depth 

thresholds. 

 Generating VCF (Variant Call Format) files for 

further downstream analysis. 

This step is crucial for identifying potential cancer-
associated mutations in the BRCA1 and BRCA2 genes. 

SnpEff [37] is a variant annotation tool that helps 

determine the biological impact of detected mutations. It is 

used for: 

 Predicting the functional effects of genetic variants. 

 Classifying mutations as synonymous, missense, or 

frameshift. 

 Annotating VCF files with gene names and potential 

pathogenicity. 

SnpEff allows us to prioritize clinically relevant mutations 

that may contribute to breast cancer. 
Figure 6 shows the feature correlation plot, which helps 

identify key genetic markers associated with breast cancer. The 

strong clustering of cancerous samples in high-mutation 

regions confirms that BRCA1 and BRCA2 mutationsand other 

functional mutation types are significant predictors of breast 

cancer risk. These insights contribute to mutation-based cancer 

classification models and early detection strategies. 
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Figure 6:   Feature correlation plot. 

 

We employed machine learning algorithms trained on 

processed genomic data to develop a reliable predictive model 

for breast cancer detection. The dataset was carefully curated 

by extracting essential features, including mutation counts in 

critical genes like BRCA1 and BRCA2,the presence or absence 

of specific mutations, synonymous and missense mutations, 

splice site variations, and intronic mutations.  

 

Figure 7 presents the distribution of BRCA2 mutation [38] 

counts across various samples. A significant proportion of 
samples exhibit zero mutations (34.6%), while the remaining 

mutations are distributed across different counts. The presence 

of higher mutation counts in BRCA2 suggests its role in 

tumorigenesis, with specific mutation frequencies contributing 

to varying degrees of cancer risk. 

Figure 8 displays the frequency of different BRCA1 

mutation [39] counts. It shows that many samples have no 

detected mutations, followed by a gradual decline in samples 

as the mutation count increases. This pattern suggests that 

while some individuals carry multiple BRCA1 mutations, the 

majority exhibit few or none. The presence of BRCA1 

mutations is often linked to hereditary breast cancer 
syndromes, making it a crucial biomarker in early detection. 

 

 
 

Figure 7:  BRCA2 mutation count. 
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Figure 8:   BRCA1 mutation count. 

 

Figure 9 compares the number of mutations across two 

distinct labels, presumably representing cancerous and non-

cancerous cases. A significant difference in mutation burden is 

evident between the two groups. Samples in one category 

exhibit a broader range of mutations, with some exceeding 

2000, whereas the other group has a relatively lower and more 

compact mutation distribution. 

  

 
Figure 9: Total mutations distributions across labels. 

 

5.  Conclusions 
This research presents a detailed analysis of BRCA1 and 

BRCA2 mutations [40] and their connection to breast cancer 

risk. The findings highlight a strong correlation between 

mutation frequency and increased cancer susceptibility. By 

leveraging machine learning, we trained models on extracted 

features, achieving an accuracy of over 95%. This study 
underscores the importance of genetic mutations in early 

cancer detection and explores how predictive models support 

doctors in making informed clinical decisions. The results 

suggest that BRCA mutations are crucial indicators of cancer 

risk, making this research valuable for oncologists, geneticists, 

and experts in precision medicine. 

 

6.  Future work 

This research has given helpful information, but there are 

many areas to explore in the future: 

1. Improved Feature Selection – Further research can 
introduce additional genetic markers and protein interactions 

to enhance prediction accuracy. 
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2. Deep Learning Integration – Using advanced neural 

networks can help find complex patterns in mutation data, 

which could improve how well classifications are done. 

3. Big and Diverse Datasets – Increasing the sample to 

include all types of different people and also environmental 

factors would improve generalizability. 

4. Real-time Clinical Application – Creating a simple 

software application that combines mutation analysis with a 

patient case history would help healthcare professionals to 
assess risks in real time. 

5. Mutation Impact Analysis – Investigating how certain 

mutations affect protein structures and functions can 

generate further biological understanding of tumorigenesis. 
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