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ABSTRACT 

Quantum effects (QEs) on the threshold and reflectivity characteristics of the optical phase conjugate 

mode (OPCM) in ion-implanted semiconductor plasmas are analytically investigated using coupled 

mode theory. Taking into account that the origin of stimulated Brillouin scattering lies in nonlinear 

induced polarisation of the medium, expressions are derived for complex effective Brillouin 

susceptibility (due to electrons and implanted colloids) and consequently the threshold pump intensity 

and the reflectivity of OPCM. Inclusion of QEs is done via quantum correction term in the hydrodynamic 

model of semiconductor plasmas. QEs modify the threshold and the reflectivity characteristics of OPCM 

in ion implanted semiconductor plasmas. Finally, an extensive numerical study of the n- InSb/CO2 laser 

system is performed for two different cases: (i) without QEs and (ii) with QEs. In both cases, the 

analysis offers two achievable resonances, at which an enhancement of reflectivity of OPCM is obtained 

at excitation intensities well below the optical damage threshold if ion-implanted semiconductor-

plasma is used as an optical waveguide with an interaction length of a few millimetres. When QEs are 

included in the analysis, the entire spectrum shifts towards decreased levels of electron and colloidal 

carrier concentration. The results suggest that a high reflectivity optical phase conjugate mirror can be 

fabricated using n-InSb-CO2 system as the outcome of this research work. 

 
1.  Introduction 

 

Optical phase conjugation (OPC) is a nonlinear optical 

phenomenon observed since 1970’s [1]. Since this 

phenomenon is realistic for use in various important 

applications ranging from optical signal processing, image 

transmission, laser resonators, high-brightness laser systems, 

filtering and ultra-low noise communication schemes [2-6], the 

investigation of OPC has become an active field of research in 

the area of quantum optics. 

Among the various existing techniques of OPC, the most 

promising are: three-wave mixing (TWM) and four-wave 

mixing (FWM) [7, 8] and stimulated scatterings processes [9]. 

In OPC studies, a large number (many thousands) of research 

articles have been published since 1970’s. Many of them are 

based on the technique of degenerate four-wave mixing 

(DFWM) in various nonlinear optical media with minor 

theoretical modifications. In the present research work, SBS 

technique is employed to study OPC in ion-implanted 

semiconductor plasmas [10]. 

Before proceeding further, it is essential to understand the 

physics behind OPC-SBS. An intense pump wave 0 0 0( , )E kω
��

 

illuminates the Brillouin active medium. The wave is passed 

through an external distorting medium, which makes the 

intensity distribution of the pump in the nonlinear medium 

both in the longitudinal and transverse coordinates and 

thereafter the distorted pump wave interacts with the Brillouin 

active medium. The Stokes wave ( , )s s sE kω
��

 develops from the 

spontaneous noise in a direction opposite to the direction of 

incident pump wave and is exponentially amplified due to SBS 

process as it travels in backward direction towards the entrance 

window of the cell containing the SBS medium. The amplified 

Stokes wave contains a transverse structure which is phase 

conjugate of the pump wave, known as optical phase conjugate 

mode (OPCM). 

First of all, the research group of Zel’dovich et al. [1], 

while illuminating a CH4 gas multimode waveguide by a ruby 

laser, observed the important phenomenon of OPC-SBS. They 

found that the scattering efficiency decreases exponentially at 

low laser power. It was suggested that efficient scattering can 

be obtained at low laser power without using the feedback to 

enhance the interaction [11]. OPC-SBS with incorporating 

optical feedback was experimentally demonstrated and studied 

analytically to lower the threshold value of pump intensity and 

enhance the reflectivity of OPCM [12]. This technique makes 

use of number of beam splitters. OPC technique minimizes the 

phase distortions encountered by aberrations arising when a 

coherent wave travels through an imperfect medium. In OPC 

technique, the aberrations get subtracted from the distorted 

coherent wave when a phase conjugate wave is allowed to pass 

back through the nonlinear medium. Zel’dovich et al. [13] 

suggested that the phenomenon of OPC-SBS have its origin in 

the backscattered component of coherent wave having 

frequency down/up shift equal to the acoustical phonon 

frequency. This component varies exponentially as faster as 

double the rate of variation of other modes. Under the regimes 
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of high-gain, this backscattered component dominates over 

other random modes and the reflectivity of OPCM even 

approaches 100%. Using this technique, high reflectivity of 

OPCM may be obtained. Thus, under regimes of high gain, an 

aberrated pump wave supports the amplification of a single 

(optical phase conjugate) mode. 

OPC-SBS can be established in a Brillouin active medium 

at excitation intensity greater than the threshold intensity. 

Anderson et.al. [14] reported that OPC signals of 174 10−×  

J/pulse can be obtained by inserting an input pre-amplifier. 

Ridley and Scott [15] obtained OPC signals of 133 10−×  J/pulse 

by introducing an amplifier of high gain in the geometry of 

OPC-SBS. They observed that the use of pre-amplifier into the 

geometry of OPC-SBS significantly reduces the threshold 

value of pump intensity required for the process of OPC-SBS. 

Hellwarth [16] reported that the fidelity of OPCM in a 

waveguide structure is a function of pump energy distribution 

among various modes of vibration and is independent of the 

excitation intensity. Suni and Falk [17] assigned the origin of 

this discrepancy to a different treatment of phase mismatched 

scattering terms. The theoretical results discussed above do not 

incorporate the pump depletion, which becomes pre-dominant 

at pump intensities well above the threshold intensity of 

OPCM. Lehmberg [18] reported that in OPC-SBS waveguide 

structures, the pump depletion increases the fidelity by 

retarding the small-scale pulling effect. Scott and Hazell [19] 

on the basis of theoretical formulations developed for transient 

state All the theoretical results discussed above were 

formulated on OPC-SBS by looking its applications in optical 

fiber communication. However, the phenomenon of OPC-SBS 

in a Brillouin cell, consisting of III-V semiconductors, could 

have a great potential in obtaining enhanced reflectivity of 

OPCM, which has potential applications in laser-plasma 

induced fusion. 

The doped semiconductors such as n-InAs, n-GaAs, n-

InSb etc. are the host materials which exhibit Brillouin 

nonlinearity ( Bχ ) [20]. This is due to the excess of free carriers 

in these media [21]. Moreover, Bχ  can be significantly 

enhanced by the application of an external magnetic field [21]. 

Aghamkar and Singh [22] studies OPC-SBS in weakly 

piezoelectric magnetized semiconductor plasmas. Singh and 

Aghamkar [22] studies OPC-SBS in narrow bandgap 

semiconductors. Singh et al. [23] studies OPC-SBS in 

magnetized diffusion driven semiconductors. Bhan et al. [24] 

studied the threshold and reflectivity characteristics of OPCM 

in transversely magnetized semiconductors. Apart from this, 

Bχ  may be affected by implanted colloids concentration in 

ion-implanted semiconductor plasmas (IISPs). 

The fabrication of semiconductor plasmas with regulated 

impurity profiles frequently uses the doping technique of ion 

implantation. However, because the implantation procedure 

damages the crystal lattice, post-implantation annealing is 

required to restore the lattice to a high degree and activate the 

dopants electrically [25]. The structural, electric, magnetic, 

(linear and nonlinear) optical properties of semiconductors can 

be modified by the implanted ions [26]. As a result, its primary 

use is in the development of semiconductor components. The 

depth profile of the implanted ion may be explained by 

chemical binding effects linked to ion-ion and ion-target atom 

interactions at low energies [27]. As a result of this process, the 

implanted metal ions are neutralised during the slowing 

processes and eventually agglomerate to produce colloids of 

implanted materials. 

The host material would display a variety of valuable 

thermodynamic, electrical, and optical properties that can be 

easily controlled, though, if the colloid particles could 

somehow be aligned in a long-range periodic fashion. Ion 

implantation is a popular method for creating diverse 

nanofabrication tools. The formation of tiny colloid particles in 

a long-range order lattice in magnetized and inhomogeneous 

semiconductor quantum plasmas has been studied theoretically 

[28, 29]. A stream of electrons with a drift speed similar to the 

ion-acoustic phonon speed in the crystal may be driven by the 

presence of an external drift field considerably below the 

breakdown of the semiconductor. By causing consistent 

electron current, these external fields can charge the growing 

colloid particles by sticky collisions. By using this method, 

colloidal plasma will be created, which resembles dusty plasma 

in that it contains electrons, negatively charged colloid 

particles, and vibrating positive lattice ion centres. This 

medium will become an IISP medium. In-depth research [30, 

31] has been done on the function of charged colloids in IISPs 

for both identifying new modes of propagation and amplifying 

the waves of already existing modes. The existence of 

numerous novel modes and creative alterations to the 

characteristics of already-existing modes of propagation in 

IISPs has been demonstrated [32]. The most recent results 

further show that, even at frequencies where colloidal grains do 

not contribute to the linear motion of waves, the presence of 

charged colloids in IISPs has a significant impact on the wave 

properties of existing modes [33]. The colloids in these 

situations offer an immovable charge-neutralizing backdrop in 

IISPs. 

Researchers have been concentrating their efforts on 

theoretical investigations of quantum effects (QEs) in plasmas 

for a long time. In super cooled plasmas, the de-Broglie 

wavelength connected to plasma particles approaches the 

Debye length [34]. It is possible to extend the magneto-

hydrodynamic model of classical plasmas to encompass 

quantum plasmas; this newly created model is referred to as the 

quantum hydrodynamic (QHD) model [35]. In its most basic 

form, the QHD model is the generalisation of the classical 

hydrodynamic (CHD) model of plasmas with the inclusion of 

the quantum (Bohm potential) correction factor. Recently, this 

approach has been applied to the analytical study of QEs on 

parametric interactions [36], modulational interactions [37, 

38], and SBS [39] in semiconductor magneto-plasmas. 

For relatively large density of implanted colloids, QEs 

could become highly important in IISPs. The formation of 

colloid crystals in IISP has been reported by Zeba et al. [29]. 

Through the use of the Bohm potential, they have 

demonstrated that QEs on lattice electron-phonon coupling 

effects contribute to the dielectric response function of IISP. 

My research group has recently investigated QEs on 

modulational amplification characteristics [40] and Brillouin 

amplification characteristics of SBS [41] in IISPs. In these 

investigations, we found that including QEs reduced the 

threshold pump amplitude for the onset of modulational and 

Brillouin amplification and enhances the growth rate of the 
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modulated beam and Brillouin gain coefficient for both the 

electrons and implanted colloids. 

According to a literature review, QEs have not been 

investigated on OPC-SBS in IISPs.  In the present chapter, we 

conduct a theoretical formulation followed by a numerical 

analysis to examine the threshold and reflectivity 

characteristics of OPCM in IISPs under two different cases of 

interest, namely (i) the inclusion of QEs and (ii) the exclusion 

of QEs, keeping in mind the significant impact of QEs on 

OPC-SBS in IISPs. Expressions for the complex effective 

Brillouin susceptibility (caused by electrons and implanted 

colloids) are obtained using coupled mode theory of interacting 

waves and the assumption that the origin of OPC-SBS lies in 

finite nonlinear induced polarisation and consequently the 

complex effective Brillouin susceptibility of IISPs. The 

complex effective Brillouin susceptibility is used to calculate 

the threshold intensity and reflectivity of OPCM. In order to 

enhance the reflectivity of OPCM at low pump intensities, 

efforts are made to optimise the concentration of electrons and 

implanted colloids as well as to set the value of the electron-

plasma frequency and dust plasma frequency. Finally, an 

extensive numerical study is performed for n-InSb irradiated 

by a pulsed CO2 laser. 

The fact that implanted colloids, in addition to electrons, 

may significantly alter Brillouin nonlinearity and, as a result, 

the propagation characteristics of OPCM in IISPs, serves as the 

impetus for this investigation. This investigation becomes even 

more essential under high power pump irradiation since it 

helps to better understand OPC-SBS in IISPs. The threshold 

and reflectivity characteristics of OPCM in IISPs have been 

modified in comparison to earlier studies of OPC-SBS in 

semiconductor magneto-plasmas using the CHD model [24], 

which makes this work a novel study with applications in the 

development of efficient phase conjugate mirrors. 
 

2.  Effective Brillouin susceptibility 
 

In this section, an expression is obtained for the effective 

Brillouin susceptibility (including QEs) in IISPs. For this, 

CHD model of homogeneous one-component semiconductor 

magneto-plasma (i.e. 1ak l≪ , where ak  is the acoustic phonon 

mode number and l  the carrier mean free path) has been 

extended to take account of quantum corrections resulting into 

one-component semiconductor quantum plasma depicted by 

subsequent QHD model. 

In IISPs, SBS occurs due to nonlinear interaction among 

three coherent fields, viz.  

(i) an intense pump field 0 0 0 0( , ) exp[ ( )]E x t E i k x t= −ω ,  

(ii) an induced acoustic phonon mode 

0( , ) exp[ ( )]a au x t u i k x t= −ω , and  

(iii) a scattered Stokes component of pump field 

( , ) exp[ ( )]s s s sE x t E i k x t= −ω .  

Here 0 0( , )kω
�

, ( , )a akω
�

, and ( , )s skω
�

 represent the pump 

wave, acoustic phonon, and Stokes wave frequencies and wave 

number’s, respectively. 

The set of hydrodynamic (usually momentum transfer and 

continuity) equations that contain QEs via the Bohm-like 

potential are used to describe the carrier dynamics. Purely QEs 

are introduced by quantum statistics and the novel force 

associated with the quantum Bohm potential. Instead of 

dealing with the complexity of the Schrodinger-Poisson (2N 

equations), the QHD model is a simplified model that enables 

uncomplicated examination of the collective dynamics. 

If IISP contains negatively charged colloids, the following 

is the requirement for charge neutrality: 

 

0 0 0 0i d d en Z n n= + .                                                            (1) 

 

The number of unaffected charges that are present on the 

colloid grain is given by the symbol 0dZ  (expressed in units of 

electronic charge). 0dn , 0en  and 0in  are the carrier densities of 

colloid grain, electrons, and unperturbed ions, respectively. 

The ultra-cold IISP acts like a Fermi gas and abides by the 

pressure law because, as IISP cools, the plasma carriers' de-

Broglie wavelengths become equivalent to the system 

dimensions [35]. Equation (2), which has been modified partly 

to take into account the Fermionic property of the colloids, is 

used in the model to incorporate quantum statistics. 

 
2 3

1

2

03

l Fl l
Fl

l

m V n
P

n
= ,                                                                 (2) 

 

In equation (2), FlP  is the Fermi pressure, where the 

subscript l = e, d stand for electrons and implanted colloids, 

respectively. 0ln  and 1ln  are unperturbed and perturbed 

electron densities, respectively. lm  is the mass of plasma 

carriers. ( 2 / )F B FV k T m=  represents the Fermi speed, in which 

FT  is the Fermi temperature and 
B

k  is the Boltzmann constant. 

The interpretation of pressure is based on the fluid's mean 

velocity being dispersed at different rates. The pressure term 

selected in this case is calculated under the assumption that 

electrons and colloids with homogeneous grain size are 

characterised by a zero temperature Fermi distribution 

function. 

In QHD model, the basic equations that describe SBS in 

IISP are as follows: 

 

                                                                  

2 2

1

2 2

( , ) ( , ) ( , ) β
2

ρ ρ
a

Eu x t C u x t u x t

t xt x

∂∂ ∂ ∂
− + Γ =

∂ ∂∂ ∂
                                                                 (3) 

 

                                                                                    

0
0 0νl l

l

l

v Z e
v E

t m

∂
+ = −

∂
                                                                                     (4) 
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1 1
1 0 1 2 3

0 0

1
ν .

4

l l l

l l l s

l l l l

v Z e nP
v v v E

t x m m n x m n x

∂ ∂∂ ∂ 
+ + = − − + 

∂ ∂ ∂ ∂ 

ℏ
                                                    (5) 
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1 1 1
0 0

l l l
l l

n v n
v n

x x t

∂ ∂ ∂
+ = −

∂ ∂ ∂
                                                                                    (6) 

 

                                                                                

2
11

2

β

ε ε

l lZ enE u

x x

∂ ∂
+ = −

∂ ∂
.                                                                                      (7) 

 

Equation (3) represents the generated acoustic phonon 

mode in an IISP. Here β  is the piezoelectric constant, C  is the 

elastic constant, ρ  is the material density, aΓ  is the 

phenomenological damping parameter of the acoustic phonon 

mode, and ( , ) exp[ ( ω )]a au x t u i k x t= −  is the lattice 

displacement. The term on right hand side of equation (3) is the 

driving force per unit material density having its origin in 

piezoelectric property of the medium. Equations (4) and (5) are 

the momentum balance equations impacted by pump ( 0E ) and 

scattered ( sE ) fields; 0lv  and 1lv  are the 0
th

 and 1
st
 order 

oscillatory fluid velocities of carriers. Here lZ e  is the charge 

and ν  the momentum transfer collision frequency of carriers. 

The ratio of negative charges dq  present over the colloidal 

grains to the charge e  may be used to characterise the charge 

state of carriers ( / )l lZ q e= . Equation (6) represents the 

continuity equation for carriers, where 1ln  and 0ln  are the 

perturbed and equilibrium carrier densities, respectively. The 

Poisson's equation [Equation (7)] can be used to calculate the 

strong space charge field 1E  that was created as a result of 

charge carriers migration under the effect of the pump field. 

0 1ε ε ε=  is the dielectric permittivity, in which 0ε  and 1ε  

being the free space permittivity and lattice dielectric constant 

of IISP, respectively. 

The carrier density perturbation that results from the 

interaction of the pump wave and generated acoustic phonon 

mode leads to the electron plasma wave (EPW) and generates 

nonlinear current density in IISP. The equation for this EPW is 

obtained by using the linearised perturbation theory [31]. 

Differentiating equation (6) with respect to time, substituting 

the first-order differential coefficient of the 0
th

 and 1
st
 order 

oscillatory fluid velocities of carriers through equations (4) and 

(5), space charge field through equation (7) and assuming 

1 exp[ ( ω )]a a an i k x t∝ −  and 0 0 0 0, exp[ ( ω )]n v i k x t∝ − , we 

obtain 

 

                                                            

2 2
2 2 '21 1 0 1

12 2

β
(ω ) ν

ε

l e l l l

pl Fl l l

l

n n Z en nu
k V n E

t m xt x

∂ ∂ ∂∂
+ + + + = −

∂ ∂∂ ∂
                                                     (8) 

 

with 0
l

l

l

Z e
E E

m

 
= − 

 
, 

' 1/ 2(1 γ )Fl Fl elV V= + , 

 

and 
2 2

γ
8

el

l B Fl

k

m k T
=
ℏ

 

 

and 

1/ 2
2 2

0( )
ω

ε

l l

pl

l

Z n e

m

 
=  
 

 (plasma frequency). 

 

In obtaining equation (8), the Doppler shift has been 

disregarded under the assumption: 0 0ω ν kv>> >>  [42]. 

The generation of one induced acoustic and one Brillouin 

scattered photon at the same time as the annihilation of one 

pump photon, is another way to define SBS. By this 

prospective, the transfer of energy among the pump, the 

induced acoustic, and the Brillouin scattered waves may be 

described by the following momentum and energy 

conservation relations: 0 a sk k k= −ℏ ℏ ℏ  and 0ω ω ωa s= +ℏ ℏ ℏ . 

The Brillouin shift is determined by these equations, which are 

also referred to as the phase matching requirements. We can 

only take into account the resonant Stokes component (

0ω ω ωs a= − , 0s ak k k= − ) and disregard the higher-order 

components that are off-resonant by assuming that the 

interacting waves have a long interaction path [43]. It is 

possible to distinguish between the fast (
fln ) and slow ( sln ) 

components of the perturbed carrier density ( 1ln ) induced in 

IISP, i.e. 
1l fl sln n n= + , where the subscript l = e (for electrons) 

and d (for implanted colloids). Hence, we may express: 

1e fe sen n n= +  (for electrons) and 
1d fd sdn n n= +  (for implanted 

colloids), where 
fen  and sen  are the fast and slow components 

of the perturbed electron density ( 1en ), respectively and 
fdn  

and sdn  are the fast and slow components of the perturbed 

implanted colloids density ( 1dn ), respectively. The fast 

component 
fln  and hence ; ( exp[ ( ω )])fe fd s sn n i k x t∝ −  

corresponds to scattered Stokes mode whereas; the slow 

component sln  and hence ; ( exp[ ( ω )])se sd a an n i k x t∝ −  are 

associated with the induced acoustic phonon mode. By 

resolving equation (8) into fast and slow components of 

perturbed carrier density, we obtain the following coupled 

equations: 

 

                                                                   

2 *
2 2 '2

2
ν (ω )

fl fe sl
pl Fl fl l

n n n
k V n E

t xt

∂ ∂ ∂
+ + + = −

∂ ∂∂
                                                                 (9a) 
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*2 2
2 2 '2 0

2 2

β
ν (ω )

ε

flsl se l l

pl Fl sl l

l

nn n Z en u
k V n E

t m xt x

∂∂ ∂ ∂
+ + + + = −

∂ ∂∂ ∂
.                                                      (9b) 

 

The fast and slow components of the perturbed carrier 

density are denoted by the subscripts f and s, respectively. 

Indicators with an asterisk (*) represent the quantity's complex 

conjugate. 

Equations (9a) and (9b) demonstrate how 
fln  and sln  are 

connected to one another by a pump electric field 0E  (via 
lE ). 

In IISP, the plasma carriers, viz. electrons and charged colloids 

contribute to the Brillouin susceptibility. In order to avoid the 

complexities in the formulation of Brillouin susceptibility, 

distinct formulations have been established for the electrons 

and the implanted colloids. 
 

2.1  Brillouin susceptibility due to electrons 
 

For electrons, the slow component ( sen ) of perturbed 

carrier density, including QEs, may be obtained from equations 

(9a) and (9b) and using equation (3) as: 

 

                                                       

1
222 3 *

20
12 2 2 2

2

β
(δ νω )

ερ (ω 2 ω ) (δ νω )

ee e s
se a

e a a a a s

k Ei en Z k E
n i

m k v i i

−
 

−  = − −
 − − Γ +
                                                   

 (10) 

 

where 2 2 2 2 '2

1δ (ω ω )pe a Fek V= − + , 2 2 2 2 '2

2δ (ω ω )pe s Fek V= − + , 

 

and 

1/ 2
2

0ω
ε

e

pe

e

n e

m

 
=  
 

is electron plasma frequency. 

 

The induced current density ( eJ ) including QEs, may be obtained from the relation: 

 

                                                                                       
*

0(ω )
e s se e e

J n Z ev= − ,                                                                                 (11) 

 

which yields 

 

                                                          

1
22 22 *

0 2

1 2

0 2

ε ω
(ω ) (δ νω )

2 ω ω (δ νω )

ee pe s

e s a

e a a s

k Ei eZ Ak E E
J i

m i

−
 
 = − −
 Γ +
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                                                  (12) 

 

where 
2 2 2κ aA k v= , 

2
2 β
κ

εC
= , 0ω ω ωs a= − , 

0

0(ν ω )

e
e

E
v

i
=

−
. 

 

In deriving equation (12), the oscillatory electron fluid 

velocity 0ev  is obtained from equation (4). 

The time integral of the induced current density can be 

used to express induced polarisation. Thus, the induced 

polarisation ( eP ) due to electrons (at ωs ), including QEs, may 

be obtained from equation (12) as: 

 

                                                   

1
22 22 *

0 2

1 2

0 2

ε ω
(ω ) (δ νω )

2 ω ω ω (δ νω )

ee pe s

e s a

e a a s s

k EeAkZ E E
P i

m i

−
 
 = − −
 Γ +
 

2 *

0 0ε χ Be sE E=
                      

            (13) 

 

From equation (13), the Brillouin susceptibility ( χBe ) of IISP due to electrons, including QEs, may be obtained as: 

 

                                                                   

1
222

1 2

1 2

0 2

ε ω
χ (δ νω )

2 ω ω ω (δ νω )

ee pe

Be a

e a a s s

k EeAkZ
i

m i

−
 
 = − −
 Γ +
 

.                                                      (14) 

 

2.2  Brillouin susceptibility due to implanted colloids 
 

The colloidal grains have a tendency to cling together and 

develop a net negative charge due to the high mobility of 

drifting electrons. For implanted colloids, the slow component 

( sdn ) of perturbed carrier density, including QEs, may be 

obtained from equations (9a) and (9b) and using equation (3) 

as: 
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1
2 22 3 *

* 2 20

2 2 2 2 2

β
( ω )

ερ (ω 2 ω ) ( ω )

dd d s

sd a

d a a a s s

k Ei en Z k E
n

m k v i

−
 −
 = ∆ − −

− − Γ ∆ −  

,                                                  (15) 

 

where 2 2 2 '2ω pd Fdk V∆ = + , in which  

 
1/ 2

2 2

0( )
ω

ε

d d

pd

d

Z n e

m

 
=  
 

is dust plasma frequency. 

 

The induced current density ( dJ ) including QEs, may be obtained from the relation: 

 

                                                                                         
*

0(ω )d s sd d dJ n Z ev= − ,                                                                              (16) 

 

which yields 

 

                                                           

1
2 2 22 *

0 2 2

2 2

0

ε ω
(ω ) ( ω )

2 ω ω ( ω )

dd pd s

d s a

d a a s

k Ei eZ Ak E E
J

m

−
 
 = ∆ − −

Γ ∆ −  

,                                                   (17) 

 

where 
2 2 2κ aA k v= , 

2
2 β
κ

εC
= , 0ω ω ωs a= − , and 0

0( ω )

d
d

E
v

i
=

−
. 

 

The induced polarisation ( dP ) due to implanted colloids (at ωs ), including QEs, may be obtained as: 

 
1

2 2 22 *

0 2 2

2 2

0

ε ω
(ω ) ( ω )

2 ω ω ω ( ω )

dd pd s

d s a

d a a s s

k EeAkZ E E
P

m

−
 
 = ∆ − −
 Γ ∆ −
 

. 

                                                                        

2 *

0 0ε χ Bd sE E= .                                                                                                       (18) 

 

The Brillouin susceptibility ( χBd ) of IISP due to implanted colloids, including QEs, may be obtained as: 

 

                                                                 

1
2 22

1 2 2

2 2

0

ε ω
χ ( ω )

2 ω ω ω ( ω )

dd pd

Bd a

d a a s s

k EeAkZ

m

−
 
 = ∆ − −
 Γ ∆ −
 

.                                                            (19) 

 

2.3  Effective Brillouin susceptibility of IISP 
 

The effective Brillouin susceptibility (
( )χ e

B ) of IISP, 

including QEs, is the sum of Brillouin susceptibilities due to 

electrons ( χBe ) and due to implanted colloids ( χBd ). Addition 

of equations (14) and (19) yields: 

 

                               
( )
χ χ χ

e

B Be Bd= +  

                         

1 12 2 222 2

2 2 21
1 2 2 2

0 2

ω ωε
(δ νω ) ( ω )

2 ω ω ω (δ νω ) ( ω )

dee pe d pd

a a

a a s e ds s

k Ek EZ ZeAk
i

m mi

− −    
    = × − − + ∆ − −    Γ + ∆ −

    

.                 (20) 

 

It can be inferred from equation (20) that both electrons 

and implanted charged colloids contribute to the formulation of 
( )
χ

e

B
. The expressions for ( )

χ
e

B
 of IISP, excluding QEs, can be 

obtained by putting ' 0FeV =  (in 1δ , 2δ  and ∆ ) in equation 

(20). 
 

 

2.4  Threshold pump intensity for OPCM 
 

In order to determine the threshold pump intensity and the 

reflectivity of OPCM, including QEs, in IISPs, the well known 

Maxwell’s equations are employed to describe induced 

polarization and polarization effects. The generalised 

electromagnetic wave equation can be expressed as [44]: 
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22 2

02 2 2 2

1 indPE E

x c t t

∂∂ ∂
− = µ

∂ ∂ ∂
,                                                                         (21) 

 

where 0µ  and c  are the permittivity of free space and 

velocity of light in the medium, respectively. indP  represents 

the total induced polarization, which is the sum of linear and 

nonlinear polarization of the crystal. Using Equation (21), the 

steady-state coupled wave equations for the pump and the 

backward Stokes mode in one dimension, including QEs, are 

obtained as [24]: 

 

                                                           

2 2
2( )0 0 0

0 0 0 0 ,0 02 2

0 0
2 2

e

Ir I B s

E E ii
i E E E E

x k x k c

 ∂ ∂ ω
− + α − α = − χ 

∂ ∂ 
                                               (22a) 

and 

 

                                                             

2 2
2( )

, 02 22 2

es s s

Irs s Is s B s s

s s

E E ii
i E E E E

x k x k c

 ∂ ∂ ω
− − α + α = χ 

∂ ∂ 
.                                                (22b) 

 

Here 
2(1) ( )0

0 0 , 0
2

e

I I B I sE
c

ω  α = χ + χ
 

 represents the intensity 

dependent absorption coefficients of IISPs at pump frequency 

0ω , 

2(1) ( )

,
2

es

Is Is B Is sE
c

ω  α = χ + χ
 

 represents the intensity 

dependent absorption coefficients of IISPs at Stokes mode 

frequency sω , 

2(1) ( )0
0 0 , 0

2

e

Ir r B r sE
c

ω  α = χ + χ
 

 represents the contribution 

arising due to dispersive property of IISPs at pump frequency 

0ω , 

2(1) ( )

, 0
2

es

Irs rs B rs E
c

ω  α = χ + χ
 

 represents the contribution 

arising due to dispersive property of IISPs at Stokes mode 

frequency sω ,  
( )

, 0

e

B rχ  is the real part of ( )e

Bχ  associated with pump 

frequency 0ω , and 
( )

,

e

B rsχ  is the real part of ( )e

Bχ  associated with Stokes mode 

frequency sω . 

In the present analytical investigation of QEs on OPC-

SBS, the phase matching conditions which are to be satisfied 

for interacting waves are: 0 s aω = ω + ωℏ ℏ ℏ  and 

0 s ak k k= − +
� � �
ℏ ℏ ℏ ; known as energy and momentum 

conservation relations, respectively. For OPCM, under the 

condition 0 sk k= −
� �

, one should have 02ak k=
� �

. In the 

forthcoming analysis, let us assume 0 sk k k= =
� �

. 

Consequently, 2ak k=
�

 and for low acoustic phonon mode 

frequency ( 0 aω ω≫ ), one may consider 0 sω ≅ ω = ω  (say). 

Under these assumptions, one can take 0I Is Iα = α = α  (say) 

and ( ) ( ) ( )

,0 ,

e e e

B B s Biχ ≅ χ = − χ  (say), with ( )e

Bχ  being the complex 

effective Brillouin susceptibility (including QEs). 

Following the single-mode analysis, the phase conjugate 

Stokes mode electric field is related to the pump wave electric 

field via relation [45]: 

 
*

0( , ) ( ) ( , )sE r x R x E r x⊥ ⊥= ,                                                    (23) 

 

where ( )R x  is a conjugacy factor and 
2

( )R x  is known as 

reflectivity of OPCM. 

Using Equations (22a) and (22b), the equations for electric 

field associated with pump wave and Stokes mode, including 

QEs, can be obtained as [24]: 

 

                                                                     

2
2( )0

0 0 02
2

e

Ir I B s

E i
i E E E E

x kc

∂ ω
+ α − α = − χ

∂
                                                                (24a) 

 

and 

 

                                                                      

2
2( )

02
2

es
Ir s I s B s

E i
i E E E E

x kc

∂ ω
− α + α = χ

∂
                                                                  (24b) 

 

Since 
2

sE  is a generated field and 13

0( 0) 10sE x E
−= ∼  [1], one may safely assume 

22 ( )

2

(0)

2

e

B s

I

E

kc

ω χ
α ≫ . Therefore 

 

                                                                    
[ ]0 0( ) ( )exp{ ( )} exp{ ( )}I IrE x E L L x i L x= −α − α − ,                                                    (25) 

 

where 0 ( )E L  is the pump wave electric field at x L=  

(entrance window) of Brillouin medium. Equation (25) 

manifests the dependence of pump amplitude as well as the 

nature of phase variation of electric field on path length of 

semiconductor crystal x . Using equations (24b) and (25), the 

electric field associated with back-scattered Stokes mode, 

including QEs, can be obtained as [24]: 
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{1 exp(2 )}
( ) (0).exp .exp{ }

2

I
s s I Ir

I

x
E x E x i x

 κ − α
= − α α 

α 
,                                              (26a) 

 

where 

 

                                                                                  

2 ( )
2

02
( ) exp( 2 )

2

e

B
IE L L

kc

ω χ
κ = − α .                                                                  (26b) 

 

(0)sE  is pump wave electric field at exit window ( 0x = ) of Brillouin medium and is defined as spontaneous noise field. 

Equation (26a) can be expressed as: 

 

                                                                
[ ]'( ) (0) cos( ) sin( ) .exp{ ( )}s s Ir Ir IrE x E L i L i L x= α + α − α −

                  
                           (27a) 

 

where 

 

                                                                         

{ }'
1 exp(2 )

(0) (0).exp
2

I

s s I

I

x
E E x

κ − α 
= − α 

α 
.                                                      (27b) 

 

The gain constant associated with the back-scattered Brillouin mode ( )sE x , including QEs, is given by 

 

                                                                                     

{ }1 exp(2 )
exp

2

I

I

I

x
x

κ − α 
− α 

α 
.                                                                 (28a) 

 

In order to obtain finite gain of back-scattered Stokes mode, the following condition should be satisfied [24]: 

 

                                                                                      

{ }1 exp(2 )
0

2

I

I

I

x
x

κ − α
− α <

α
.                                                                    (28b) 

 

If a semiconductor waveguide of thickness mm is 

illuminated by an off-resonant laser with photon energy 

smaller than the band-gap energy of the crystal, this inequality 

can be resolved in a straightforward manner. On the basis of 

this premise, one may take 2 1I xα < .  Consequently, the 

threshold value of pump intensity for OPCM, including QEs, is 

given by 

 

                     

3

0
0 2 ( )T e

B

c k
I

ηε α
=

ω χ
,  

                       

1
1 12 2 222 23

2 2 20
1 2 2 2

1 2

2
( ) ( )

( ) ( )

dee pe d pda a
a a

e ds s

k Ek EZ Zc k
i

eAk m mi

−− −    ω ωηε α Γ ω     = δ − νω − + ∆ − ω −    ε δ + νω ∆ − ω
    

                     (29) 

 

where η  is the background refractive index, α  is the 

background absorption coefficient of semiconductor crystal, 

and 
2

0 0 0

1

2
T TI c E= ηε . 

The expression for 0TI , excluding QEs, can be obtained 

by putting ' 0FeV =  (in 2δ ) in equation (29). 0TI  is significantly 

affected by the wave number magnitude k , electron 

concentration 0en  (via ω pe
 in 2δ ), and quantum correction 

term (via 1δ , 2δ  and ∆ ). 
 

2.5  Reflectivity of OPCM 
 

Using equations (25) and (27), the reflectivity of OPCM 

(at x L= ), including QEs, is given by 

 

                                                             

{ }
2

2 2

0

(0)
( ) exp 2 ( 2 ) 1

( ) 2

s x
E

R L L x e
E L

α
   κ  

= α − − −      α   
.                                                  (30) 

 

The expression for 
2

( )R L , excluding QEs, can be 

obtained by putting 
' 0FeV =  (in 2δ ) in equation (30). For small 

laser-semiconductor interaction length, 2 1xα < . 

Consequently, equation (30) reduces to: 
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{ }
2

2

0

(0)
( ) exp 2 ( 2 )

( )

sE
R L L x x

E L

 
= α − + κ    
  

 

                                                                                 

2
2 ( )

2

02

0

(0)
exp 2 ( 2 ) ( ) exp( 2 )

( ) 2

e
s B

I

E x
L x E L L

E L kc

    ω χ
= α − + − α    
       

.                 (31) 

 

In equation (31), the generated spontaneous noise field at 

the entrance window 
213

0(0) 10 ( )sE E L
−≈  [1]. Hence, in 

order to obtain high reflectivity of OPCM in IISPs, one should 

have 2{ ( 2 ) } 30L x xα − + κ ≈ . This enables one to have a gain 
30

e∼  and reflectivity of OPCM, including QEs, 
2

( ) 1R x ≈ . 

For a back-scattered OPCM, it is simple to obtain from 

equation (31) that at x L= , for IISP of length L , 

( ) 15Lκ − α =  and 
2

( ) 1R x L= ≈ . This finding is in good 

agreement with the experimental findings of Zeldovich et al. 

[1]. Using equations (28) and (29), it is clear that at pump 

intensity 0 ( )I L > 0TI , reflectivity of OPCM, including QEs 
2

( ) 1R L ≈  can be obtained in IISPs with sample length 

millimeterL ≈ . 

Equation (29) manifests that the threshold intensity 0TI  

for OPCM may be brought lower by assuming a laser-IISP 

interaction system having large Brillouin susceptibility ( )e

Bχ . 

Moreover, the reflectivity of OPCM 
2

( )R L  depends on ( )e

Bχ  

(via κ ) [Equation (31)], therefore an enhancement in 
2

( )R L  

is possible if one obtains larger ( )e

Bχ  in IISP (Brillouin) 

medium. 

 

3.  Results and discussion 
 

The study presented in the preceding section clearly 

reveals that one may observe OPC-SBS in IISPs by employing 

the QHD model for the electron dynamics. To have a 

numerical appreciation of the results obtained in the analysis, 

let us consider n-InSb crystal as a Brillouin active medium 

with L = 5 mm at temperature 77 K irradiated by 10.6 µm 

pulsed CO2 laser. The stimulation for the selection of n-InSb 

for OPC-SBS analysis stems from the extensive technological 

applications it has already found for itself in modern 

optoelectronics [46, 47]. The relevant parameters of InSb are 

given in Table 1 [48]. The values of ( )
χ

e

B
, 0TI , and 

2
( )R L  are 

determined under two categories, viz. excluding QEs and 

including QEs, and are shown in Table 2. The determined 

values of ( )
χ

e

B
 due to electrons and due to implanted colloids 

are well in agreement with available literature using CHD 

model [49] and QHD model [39]. 

 
Table 1: Material parameters for n-InSb/CO2 laser system. 

 

Parameter Symbol Units Value 

Dielectric constant 
1ε  --- 17.8 

Fermi temperature TF K 77 

Electron’s rest mass m0 kg 9.1×10-31 

Electron’s effective mass M (× m0) 0.014 

Colloids mass md kg 1.67×10-27 

Crystal mass density ρ  kg m-3 5.8×103 

Acoustic damping parameter 
aΓ  s-1 2×1010 

Piezoelectric coefficient β  Cm-2 0.054 

Electron collision frequency 
eν  s-1 3.5×1011 

Pump wave frequency 
0ω  s-1 1.78×1014 

Acoustic wave frequency 
aω  s-1 2×1011 

Acoustic wave velocity 
av  ms-1 4×103 

 

Table 2: Calculated values of 0TI  and 
2

( )R L  around resonances 
2 2ω ~ ωpe a  and 

2 2ω ~ ωpe s  (when QEs are excluded),  

and 
2 2 2 '2ω ~ ωpe a Fek V+  and 

2 2 2 '2ω ~ ωpe s Fek V+  (when QEs are included). 
 

Parameter Units Calculated values 

(Excluding QEs) (Including QEs) 

2 2ω ~ ωpe a

 

2 2ω ~ ωpe s

 

2 2 2 '2ω ~ ωpe a Fek V+

 

2 2 2 '2ω ~ ωpe s Fek V+  

Threshold 

intensity 

0TI  

for electrons Wm-2 1.8×1010 7.8×109 1.6×109 2.2×108 

for colloids Wm-2 3.3×1010 6.5×109 1.9×109 3.5×108 

Reflectivity of 

OPCM 
2

( )R L  

for electrons % 0.1 2 11 90 

for colloids % 0.5 2 13 98 
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We observed that the plasma carrier concentration 

significantly affect the effective Brillouin susceptibility and 

hence the threshold pump intensity as well as the reflectivity of 

OPCM for both the cases, viz. (i) excluding QEs (when 
2 2ω ~ ωpe s ), and (ii) including QEs (when 2 2 2 '2ω ~ ωpe s Fek V+ ). 

Thus, in this case, the following ratios are obtained: 
2

0 0( ) / 2.8 10T QE TI I
−= ×  and 

2 2
( ( ) ) / ( ) 45QER L R L = . 

Similarly, the implanted colloid concentration also affects 

the effective Brillouin susceptibility and hence the threshold 

pump intensity as well as the reflectivity of OPCM for both the 

cases, viz. (i) excluding QEs (when 2 2ω ~ ωpe s ), and (ii) 

including QEs (when 2 2 2 '2ω ~ ωpe s Fek V+ ). Thus, in this case, the 

following ratios are obtained: 2

0 0( ) / 5.3 10T QE TI I
−= ×  and 

2 2
( ( ) ) / ( ) 49QER L R L = . 

These illustrate that the inclusion of QEs significantly 

reduces the threshold intensity and enhances the reflectivity of 

OPCM in IISPs. 
 

3.1  Threshold characteristics of OPCM 
 

Equation (29), which describes the relationship between 

the threshold pump intensity ( 0TI ) and other factors, such as 

wave number magnitude ( k ), electron concentration ( 0en ), 

and implanted colloid concentration ( 0dn ) can be used for 

understanding the nature of the dependence. Figures 1, 2 and 3 

provide a plot of the results. 
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Figure 1: Variation of threshold intensity 0TI  with wave number 

magnitude k  for the cases: (i) excluding QEs, and (ii) including QEs. 

 

Figure 1 depicts the relationship between threshold pump 

intensity 0TI  and wave number magnitude k  in the two cases: 

(i) excluding QEs), and (ii) including QEs. In both instances, 

we found that the nature of the curves is essentially the same; 

the difference is that when QEs are included, 0TI  is 

significantly lower than when they are excluded. The curves 

corresponding to both situations coincide for smaller 

magnitudes of wave number (~ 10
7
 m

-1
), but they gradually 

diverge as wave number increases, showing that QEs on 0TI  

are more evident at greater magnitudes of wave number. The 

threshold pump amplitude decreases very rapidly with wave 

number magnitude for 73 10k < × m
-1

, the rate of fall decreases 

in the regime 7 1 7 13 10 m 5 10 mk
− −× ≤ ≤ × , and then becomes 

nearly independent for 75 10k > × m
-1

. The nature of curves can 

be understood from equation (29). When QEs are not taken 

into account ( ' 0FeV =  and hence 2δ 0= ), 1

0TI k
−∝ . However, 

when QEs are taken into account, the term 2

1δ  containing k  

gets additionally modified and 0TI  exhibits the complex 

dependence on k . 

Figure 2 depicts how the threshold pump intensity 0TI  

varies with electron concentration 0en  in the two cases: (i) 

when QEs, and (ii) including QEs. 
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Figure 2: Variation of threshold intensity 0TI  with electron 

concentration 0en  for the cases: (i) excluding QEs, and (ii) including 

QEs. 

 

When QEs are not taken into account (
' 0FeV = ), 0TI  is 

comparatively larger, remains independent of 0en , except at 
20

0 1.1 10en = ×  and 221.2 10× m
-3

. At these particular value of 

0en , 0TI  exhibit minimization which are caused by 

resonances: 2 2ω ~ ωpe a  (via 
2

1δ ) and 2 2ω ~ ωpe s  (via 
2

2δ ). When 

QEs are included (
' 0FeV ≠ ), the plot's features are unaltered 

with the exception of the shifted peak value of the curve (at 
19

0 2 10en = ×  and 216 10× m
-3

) towards smaller values of 

electron concentration and 0TI  has been decreased 

significantly throughout the plotted regime of 0en . This change 

occurred due to inclusion of QEs via appearance of the term 
2 '2

Fek V  in 
2

1δ  and 
2

2δ . In this case, the behaviour of 0TI  is 

caused by resonances: 2 2 2 '2ω ~ ωpe a Fek V+  (via 
2

1δ ) and 
2 2 2 '2ω ~ ωpe s Fek V+  (via 

2

2δ ). Thus, around resonances, the 

threshold intensity reduces by one order of magnitude when 

QEs are excluded and two orders of magnitude when QEs are 

included. 

It is important to note that the reduction of the threshold 

pump intensity necessary for OPC-SBS in magnetised 

semiconductor plasmas was achieved by Singh and Aghamkar 

[43] by establishing the single resonance 
2 2 2 2(ω ) ω {1 (2ω /ω )}{1 (ω /ω )}s m s c p c p− −∼ ; Aghamkar and 
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Singh [43] by establishing two resonances ( 2 2

02ω ωc ∼  and 
2 2

0ω ωc ∼ ), and  Bhan et al. [24] by establishing two resonances 

( 2 2ω ~ ωc s
 and 

2 2

0ω ~ ωc ). These studies were carried out by 

excluding QEs. Moreover, in none of these studies, the shifting 

of minimization curves was not observed. But in the present 

study, we obtained the minimization of threshold pump 

intensity required for OPC-SBS in (un-magnetized) IISPs by 

setting up only a single resonance in each case, viz. 2 2ω ~ ωpe s  

(when QEs are excluded), and 2 2 2 '2ω ~ ωpe s Fek V+  (when QEs 

are included). Also, we observed shifting of minimization 

curve towards smaller values of electron concentration, with 

inclusion of QEs. 

Figure 3 shows how the threshold pump intensity 0TI  

varies with implanted colloid concentration 0dn  for the 

cases: (i) in which QEs are excluded and (ii) in which QEs are 

included. To draw this behaviour, we consider the contribution 

of 0dn  to 0TI ; the contribution of 0en  to 0TI  is neglected. We 

consider the wide range of implanted colloid concentration (
2 3 6 3

010 m 10 mdn
− −< < ). This clearly shows the substantial 

reduction of 0TI . For clear understanding, the features 

corresponding to both the cases can be explained separately. 
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Figure 3: Variation of threshold intensity 0TI  with implanted colloid 

concentration 0dn  for the cases: (i) excluding QEs, and (ii) including 

QEs. 

 

When QEs are not taken into account (
' 0FdV = ), 0TI  is 

comparatively large (~ 10
11

 Wm
-2

) and remain unaffected by 

the implanted colloid concentration for 2

0 9 10dn ≤ × m
-3

. The 

regime 
2 3 3 3

09 10 m 3 10 mdn
− −× < ≤ ×  is quite sensitive to the 

nature of curve. In this regime, with increasing 0dn , 0TI  starts 

decreasing sharply, achieving minimum at 3

0 1.7 10dn = × m
-3

 

and increases sharply achieving its previously higher value at 
3

0 3 10dn = × m
-3

. For 3 3 4 3

04 10 m 1.7 10 mdn
− −× < ≤ × , 0TI  

remains unaffected by the implanted colloid concentration. The 

nature of curve of 0TI
 
versus 0dn  is repeated again in the 

regime 
4 3 4 3

02.5 10 m 8 10 mdn
− −× ≤ ≤ ×  like the regime 

2 3 3 3

09 10 m 3 10 mdn
− −× < ≤ × . For 

4

0 8 10dn > × m
-3

, 0TI  being 

comparatively larger and remain unaffected by the implanted 

colloid concentration. The behaviour of 0TI
 

in the domain 

2 3 3 3

09 10 m 3 10 mdn− −× < ≤ ×  is caused by resonance between 

frequencies of dust plasma wave and acoustic wave, i.e. 
2 2ω ~ ωpd a  (via 2∆ ) while the behaviour of 0TI  in the domain 

4 3 4 3

02.5 10 m 8 10 mdn− −× ≤ ≤ ×  is caused by resonance 

between the frequencies of dust plasma wave and OPCM, i.e. 
2 2ω ~ ωpe s  (via 2∆ ). 

When QEs are taken into account (
' 0FdV ≠ ), the entire 

spectrum has been shifted towards smaller values of colloid 

concentration and the minimization curves of 0TI  have been 

minimized significantly. The minimization of 0TI
 
previously 

occurred at 
3

0 1.7 10dn = × , and 34 10× m
-3

, have now been 

shifted to 
2

0 5 10dn = × , and 41.1 10× m
-3

, respectively. This 

change occurred due to inclusion of QEs via appearance of the 

term 
2 '2

Fdk V  in 2∆ . In this case, the minimization of 0TI  at 
3

0 1.7 10dn = × m
-3

 is caused by resonance between frequencies 

of dust plasma wave and acoustic wave modified by the 

quantum correction term, i.e. 2 2 2 '2ω ~ ωpd a Fdk V+   and the 

minimization of 0TI  at 
3

0 4 10dn = × m
-3

 is caused by resonance 

between frequencies of dust plasma wave and OPCM modified 

by the quantum correction term, i.e. 2 2 2 '2ω ~ ωpd s Fdk V+ . In 

IISPs, these resonances can be set up by proper selection of 

implanted colloid concentration. Around resonances 0TI  can 

be reduced by one to two orders of magnitude. 
 

3.2  Reflectivity characteristics of OPCM 
 

Equation (30) can be used to study the nature of the 

dependency of reflectivity (
2

( )R L ) of OPCM on several 

factors, including wave number magnitude ( k ), electron 

concentration ( 0en ), implanted colloid concentration ( 0dn ), 

and pump intensity ( 0I ). Figures 4, 5, 6 and 7 display the 

results. 
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Figure 4: Variation of reflectivity 
2

( )R L  of OPCM with wave 

number magnitude k  for the cases: (i) excluding QEs, and (ii) 

including QEs. 

 

Figure 4 depicts the relationship between the reflectivity 
2

( )R L  of OPCM and wave number magnitude k  in the two 

cases: (i) excluding QEs), and (ii) including QEs. In both 
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cases, we found that the nature of the curves is essentially the 

same; the difference is that when QEs are included, 
2

( )R L  is 

significantly greater than when they are excluded. The curves 

corresponding to both cases are extremely close to one another 

for smaller magnitudes of wave number (~ 107 m-1), but they 

gradually diverge as wave number increases, showing that QEs 

on 
2

( )R L  are more pronounced at greater magnitudes of wave 

number. The reflectivity of OPCM exhibits a linear variation 

with wave number magnitude for 75 10k ≤ × m-1 and then 

exhibit rapid increment for 75 10k > × m-1. The nature of 

curves can be understood from equation (30). When QEs are 

not taken into account ( ' 0FeV =  and hence 2δ 0= ), 
2

( )R L k∝ . However, when QEs are taken into account, the 

terms 2

1δ  and 2

2δ  containing k  gets additionally modified and 
2

( )R L  exhibits the parabolic dependence on k . 

Figure 5 depicts the relationship between reflectivity 
2

( )R L  of OPCM and electron concentration 0en  in the two 

cases: (i) excluding QEs), and (ii) including QEs. 
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Figure 5: Variation of reflectivity 
2

( )R L  of OPCM with electron 

concentration 0en  for the cases: (i) excluding QEs, and (ii) including 

QEs. 

 

When QEs are not taken into account (
' 0FeV = ),

2
( )R L  is 

comparatively smaller, remains independent of 0en , except at 
20

0 1.1 10en = ×  and 221.2 10× m
-3

. At these particular value of 

0en , 
2

( )R L  exhibit sharp peaks which are caused by 

resonances: 2 2ω ~ ωpe a  (via 
2

1δ ) and 2 2ω ~ ωpe s  (via 
2

2δ ). When 

QEs are included (
' 0FeV ≠ ), the plot's features are unaltered 

with the exception of the shifted peak value of the curve (at 
19

0 2 10en = ×  and 216 10× m
-3

) towards smaller values of 

electron concentration and 
2

( )R L  has been increased 

significantly throughout the plotted regime of 0en . This change 

occurred due to inclusion of QEs via appearance of the term 
2 '2

Fek V  in 
2

1δ  and 
2

2δ . In this case, the behaviour of 
2

( )R L  is 

caused by resonances: 2 2 2 '2ω ~ ωpe a Fek V+  (via 
2

1δ ) and 
2 2 2 '2ω ~ ωpe s Fek V+  (via 

2

2δ ). Thus, around resonances, the 

reflectivity of OPCM increases by one order of magnitude 

when QEs are excluded and two orders of magnitude when 

QEs are included. 

It is important to note that an enhancement of reflectivity 

of OPCM in magnetised semiconductor plasmas was achieved 

by Singh and Aghamkar [9] by establishing the single 

resonance 2 2 2 2(ω ) ω {1 (2ω /ω )}{1 (ω /ω )}s m s c p c p− −∼ ; 

Aghamkar and Singh [22] by establishing two resonances (
2 2

02ω ωc ∼  and 2 2

0ω ωc ∼ ), and  Bhan et al. [24] by establishing 

two resonances ( 2 2ω ~ ωc s
 and 2 2

0ω ~ ωc ). These studies were 

carried out by excluding QEs. Moreover, in none of these 

studies, the shifting of peak of the curves was not observed. 

But in the present study, we obtained the substantial 

enhancement of reflectivity of OPCM in (un-magnetized) 

IISPs by setting up only a single resonance in each case, viz. 
2 2ω ~ ωpe s  (when QEs are excluded), and 2 2 2 '2ω ~ ωpe s Fek V+  

(when QEs are included). Also, we observed the shifting of 

peak of curves towards smaller values of electron 

concentration, with inclusion of QEs. This shifting may be 

advantageous in the development of widely tunable Brillouin 

lasers. 
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Figure 6: Variation of reflectivity 
2

( )R L  of OPCM with implanted 

colloid concentration 0dn  for the cases: (i) excluding QEs, and (ii) 

including QEs. 

 

Figure 6 shows how the reflectivity 
2

( )R L  of OPCM 

varies with implanted colloid concentration 0dn  for the 

cases: (i) in which QEs are excluded and (ii) in which QEs are 

included. To draw this behaviour, we consider the contribution 

of 0dn  to 
2

( )R L ; the contribution of 0en  to 
2

( )R L  is 

neglected. We consider the wide range of implanted colloid 

concentration ( 2 3 6 3

010 m 10 mdn
− −< < ). This clearly shows the 

substantial enhancement of 
2

( )R L . For clear understanding, 

the features corresponding to both the cases can be explained 

separately. 

When QEs are not taken into account (
' 0FdV = ),

2
( )R L  is 

negligibly small (< 1%) and remain unaffected by the 

implanted colloid concentration for 2

0 9 10dn ≤ × m
-3

. The 

regime 
2 3 3 3

09 10 m 3 10 mdn− −× < ≤ ×  is quite sensitive to the 
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nature of curve. In this regime, with increasing 0dn , 
2

( )R L  

starts increasing sharply, achieving peak value at 
3

0 1.7 10dn = × m
-3

 and decreases sharply achieving its 

previously smaller value at 3

0 3 10dn = × m
-3

. For 
3 3 4 3

04 10 m 1.7 10 mdn
− −× < ≤ × , 

2
( )R L  remains unaffected 

by the implanted colloid concentration. The nature of curve of 
2

( )R L
 

versus 0dn  is repeated again in the regime 
4 3 4 3

02.5 10 m 8 10 mdn− −× ≤ ≤ ×  like the regime 
2 3 3 3

09 10 m 3 10 mdn− −× < ≤ × . For 
4

0 8 10dn > × m
-3

, 
2

( )R L  

being comparatively smaller and remain unaffected by the 

implanted colloid concentration. The behaviour of 
2

( )R L
 
in 

the domain 
2 3 3 3

09 10 m 3 10 mdn− −× < ≤ ×  is caused by 

resonance between frequencies of dust plasma wave and 

acoustic wave, i.e. 2 2ω ~ ωpd a  (via 2∆ ) while the behaviour of 
2

( )R L  in the domain 
4 3 4 3

02.5 10 m 8 10 mdn− −× ≤ ≤ ×  is 

caused by resonance between the frequencies of dust plasma 

wave and OPCM, i.e. 2 2ω ~ ωpe s  (via 2∆ ). 

When QEs are taken into account (
' 0FdV ≠ ), the entire 

spectrum has been shifted towards smaller values of colloid 

concentration and the peak of curves of 
2

( )R L  have been 

enhanced significantly. The enhancement of 
2

( )R L
 

previously occurred at 
3

0 1.7 10dn = × , and 34 10× m
-3

, have 

now been shifted to 
2

0 5 10dn = × , and 41.1 10× m
-3

, 

respectively. This change occurred due to inclusion of QEs via 

appearance of the term 
2 '2

Fdk V  in 2∆ . In this case, the 

enhancement of 
2

( )R L  at 
3

0 1.7 10dn = × m
-3

 is caused by 

resonance: 2 2 2 '2ω ~ ωpd a Fdk V+   and the enhancement of 
2

( )R L  

at 
3

0 4 10dn = × m
-3

 is caused by resonance: 2 2 2 '2ω ~ ωpd s Fdk V+ . 

In IISPs, these resonances can be set up by proper selection of 

implanted colloid concentration. Around resonances 
2

( )R L  

can be enhanced by one to two orders of magnitude and even 
2

( ) 100%R L ≅ . 
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Figure 7: Variation of reflectivity 
2

( )R L  of OPCM with pump field 

amplitude 0E  for the cases: (i) excluding QEs, and (ii) including 

QEs. 

 

Figure 7 shows how the reflectivity 
2

( )R L  of OPCM 

varies with pump intensity 0I  for the cases: (i) in which QEs 

are excluded and (ii) in which QEs are included. We noticed 

that 
2

( )R L  exhibits curves of identical shape in both cases 

across the plotted range of 0I . Both when QEs are excluded 

and when they are included, the curve has a parabola shape. 

When QEs are negligible for smaller values of 0I  ( 114 10≤ ×
Wm

-2
), the curves corresponding to both cases exactly overlap. 

The curves corresponding to both cases, however, begin to 

diverge with increasing 0I  ( 114 10> × Wm
-2

), which is the limit 

at which QEs become significant. This deviation of 
2

( )R L  

curves at large pump intensities highlights the need to include 

QEs in OPC-SBS phenomenon. 
 

4.  Conclusions 
 

In this paper, QEs on threshold and reflectivity 

characteristics of OPCM in IISPs are studied using QHD 

model. Both, the threshold and reflectivity characteristics of 

OPCM are strongly dependent on the electron as well as the 

implanted colloid concentration. The numerical analysis is 

performed for n-InSb/CO2 laser system for two different cases, 

viz. excluding QEs and including QEs. In both the cases, the 

analysis offers two achievable resonances ( 2 2ω ~ ωpe a  and 
2 2ω ~ ωpe s , when QEs are excluded, and 2 2 2 '2ω ~ ωpe a Fek V+  and 
2 2 2 '2ω ~ ωpe s Fek V+ , when QEs are included), at which the 

minimization of threshold intensity and enhancement of 

reflectivity of OPCM are obtained. The inclusion of QEs in the 

analysis shifts the entire spectrum towards smaller values of 

electrons (colloids) carrier concentration. In addition, the 

reflectivity characteristics of OPCM are insignificant for 

smaller pump intensities ( 114 10≤ × Wm
-2

) and pronounced at 

higher pump intensities ( 114 10> × Vm
-1

). As a result, the 

investigation improves our understanding of OPC-SBS 

processes in electron- and colloidal-based IISPs and establishes 

the suitability of the selected sample for the production of 

effective optical phase conjugate mirrors. 
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