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ABSTRACT 
A generalized dielectric response function for two stream instability (convective only) is obtained in n-
type gallium arsenide semiconductor plasma using a quantum hydrodynamic model. In the presence of 
a non-dimensional quantum parameter-H, we examine the phase and amplification profiles of two 
stream instabilities with an externally applied electric field ranging from 2600 to 4000 kV m-1. During 
this range, a sizable portion of the satellite valley's electron population approaches that of the central 
valley. Two new modes are created when quantum corrections are present in the plasma medium; one 
of these modes is amplifying and moves forward. Additionally, it alters the spectral signature of four 
classical plasma modes that already exist. By calculating the real part of the longitudinal electrokinetic 
power flow density, the existence of two stream instability is also demonstrated analytically. 

 
1.  Introduction 

 

A well-known phenomenon in plasma physics is the two 

stream instability found in several valley semiconductors, such 

as gallium arsenide (GaAs), silicon (Si), and germanium (Ge). 
Over the past 50 years, numerous experiments have been 

proposed to investigate this phenomenon under various 

physical settings [1–3]. On very solid theoretical basis, the 

existence of two stream instability has also been investigated 

[4–6]. Two distinct electron streams are produced by the field-

induced transferred electron mechanism, which is caused by 

the available electron densities in various valleys of the 

conduction band of several valley semiconductors (such as 

GaAs). When the drift velocity of streaming electrons 

approaches but is marginally greater than the phase velocity of 

the wave associated with it, instability resulting from the 
interaction of these two streams may manifest in plasma. Two 

stream instability's special characteristics are being used more 

and more in a number of significant areas of plasma research. 

For example, the presence of two stream instability in plasma 

media due to an electron transferred mechanism reduces the 

negative impact of high collision frequencies in solid state 

devices and amplifies the space charge wave linked to the 

instability under favorable physical conditions. 

Because of the peculiarities of its band structure, 

physicists have been quite interested in several valley 

semiconductors. Due to the relative simplicity of its band 

structure, GaAs has been the subject of extensive research in 
recent years among all numerous valley semiconductors [7, 8]. 

Studying GaAs's direct bandgap, inter-valley carrier transport, 

high mobility, and many other characteristics has shown that it 

is best suited for a wide range of applications, including 

photonics and microwave production. Since it produces a large 

number of electrons in both the core and satellite valleys, and 

since these electrons drift with varying velocities, creating a 

two stream system in the GaAs crystal, the application of an 
electric field to GaAs has always been an intriguing area of 

study. 

The implications of this subfield in a variety of physics 

environments, including intense laser-solid interaction [9, 10], 

dense astrophysical and cosmological environments [11], 

micro-plasma systems [12], nano-electronic devices [13], 

semiconductor devices [14], etc., have piqued the interest of 

plasma physicists in the last few decades. In this field of study, 

low-temperature plasma media with high carrier densities are 

taken into consideration, and it is assumed that the plasma 

particles exhibit quantum mechanical behavior. The deBroglie 
wavelength of charged particles becomes comparable to the 

plasma system's size under such physical circumstances. The 

quantum hydrodynamic model (QHD), an encompassing 

model, is used to analyze quantum effects in plasma. The 

consequences of quantum statistics and quantum diffraction in 

plasma are addressed by the QHD model. Many workers 

integrate both of these effects in a non-dimensional quantum 

parameter-H. The ratio of plasma energy to the Fermi energy 

of plasma particles is known as the quantum parameter-H. The 

literature contains the most recent information on how the 

quantum parameter-H affects various collective modes and 

related instabilities in plasmas [15–18]. 
At the classical level, a lot of work has been done to look 

at the various facets of two stream instability, including 

theoretical and experimental research. The problem of two 

stream instability has been handled quantum mechanically in a 

relatively small number of research works. The two streams are 

thought to be caused by drifting electron-hole plasma in the 

majority of these articles [19, 20]. However, under the 

quantum regime, the situation of two electron streams traveling 

at different drift velocities has not been examined. Therefore, 
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we have chosen to analyze the two electron stream instability 

of longitudinal waves in n-type GaAs semiconductor quantum 
plasma in the current study. A comparable topic has been 

explored under classical approximations by Guha and Sen [21]. 

They included the proper polar optical phonon scattering 

mechanism in their investigation. The nature of the real part of 

longitudinal electrokinetic power flow density has been used to 

establish the existence of two stream instability. The real 

fraction of the longitudinal electrokinetic power flow density, 

which should be negative for the amplifying mode, was 

determined by analyzing the impact of the non-dimensional 

quantum parameter-H on the dispersion equation of two stream 

instability. In order to determine the magnitudes of different 
system characteristics, we have also included the polar optical 

phonon scattering mechanism in our investigation. The results 

reported here are Guha and Sen's [21] quantum adjusted 

results. While we obtained two amplifying modes at the 

classical level—one forward and one backward propagating 

mode—they only achieved one forward amplifying mode. We 

discovered two novel modes in two stream instability 

phenomena in the presence of quantum effects, one of which is 

an amplifying mode that moves forward. 

 

2.  Theoretical formulations 
 

In our analysis, we consider n-type GaAs semiconductor 

quantum plasma consisting of two streams of electron with 

same charge ( q ) and different masses jm . The instability 

caused by the interaction of these two different streams of 

electrons having different drift velocity 0 jv , is governed by the 

equation of continuity and equation of motion under QHD 

model. Here we assume the electron drift velocity, the 

electrostatic electric field E  as well as wave vector k  all are 

aligned along z-direction, therefore the problem is truly one 

dimensional and hence the governing equations read as: 
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Here j = 1, 2 represent electron’s dynamics in central and 

satellite valley respectively and subscript 0 and 1 denote the 

zero and first order quantities. jv  is momentum transfer 

collision frequency, 
1/ 2(2 / )Fj B F jV k T m  Fermi velocity with 

Boltzmann’s constant Bk  and Fermi temperature FT , n  total 

carrier concentration and 0 jn  equilibrium carrier density in 

either of the valley respectively. ω / 2j pj B FH k T  and 
2 2 2/ 4ωj Fj pjk V   are the quantum parameters in which  is 

Planck’s constant divided by 2π , 
2

0ω ( ε)pj j jq n m  is plasma 

frequency with 0ε( ε ε )l ; ε l  being the lattice dielectric 

constant of semiconductor. 

Now under plane wave approximation, we assume that all 

perturbed quantities vary as: exp[ ( ω )i t kz ; where ω  and k  

are wave angular frequency and wave number respectively. 

Now following one-dimensional QHD model of semiconductor 

plasma (Eqs. (1) and (2)) and the procedure adopted in [22, 

23], the relevant dielectric response function for two stream 

instability is derived as: 
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It is the generalised form of the dielectric response 

function in semiconductor quantum plasma. Equation (3) can 

be rewritten in the following form  
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For semiconductor plasma with two valleys (central and 

satellite valleys) in its conduction band, the effective dielectric 

constant is expressed inferred (Eq. 4). By assuming a drifting 

Maxwellian as the carrier distribution function and the polar 

optical phonon scattering mechanism for momentum and 

energy transfer, the physical parameters of this dielectric 

response function for central and satellite valley electrons can 

now be determined [24–28]. This assumption is based on the 

well-known finding that the primary exchange phenomena in 

the medium is polar optical phonon scattering for n-GaAs at 

300 K (room temperature), as reported by Ehrenreich [29] and 

Podor and Nador [30]. Therefore, using Stratton's method [24], 

the electrons' momentum conservation equation [27] is as 

follows: 

 

                                

0 0/ 20 0 3/ 2

0 1 01/ 2
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Here θD  is Debye temperature of the crystal. 

0 0ω /l Bx k T , ω /ej l B ejx k T ; 0T  and ejT  being the lattice 

temperature and the effective electron temperature in jth valley 

respectively; ωl  is the optical phonon energy where ωl  

represents the longitudinal optical phonon frequency; 0 jK  and 

1 jK  are the modified Bessel functions of second kind of zeroth 

and first order respectively in ( / 2)ejx  and can be 

approximated as [31] 

0 [ln( / 4) γ]j ejK x    and 1 2 /j ejK x ; γ 0.5772  is the 

Euler’s constant. 

Due to polar optical phonon scattering, the loss of 

momentum of the carriers occurs which is represented by 
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/E po
dP dt .

2

0 (1/ ε 1/ ε ) ω /j l j lE m q   represents an 

electric field characterizing the strength of the polar mode 

scattering, ε  is the optical dielectric constant, 

1

0[exp(θ / ) 1]l DN T    is the number of phonons with wave 

vector k . From Eq. (5), we obtain jv  as: 
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The idea of the carrier temperature (hot carrier) in the 

crystal becomes crucial because the equilibrium density 

distribution condition can always be reached at a specific 

effective carrier temperature [24, 28, 32], particularly when the 

crystal is heavily doped and subject to an electrostatic field. 

The electron temperature as a function of static electric field 

can be calculated using the energy balance condition derived 

from polar optical phonon scattering, as reported by Stratton 

[24], provided that the required requirements are met. 

 

                                      

0 0 0

2

/ 22 2

0 1 0

0

2
( 1) [( 1) ( 1) ]

3π

ej ej ej ejx x x x x x x

l ej j j j

j

E
N x e e K e K e K

E

   
     

 
 

 .                                          (7) 

 

Either of the two valleys' electron temperatures can be 

determined using the equation above. 

Hilsum's [33, 34] theory that the electron temperature in 

satellite valleys typically approaches the lattice temperature is 

therefore taken into consideration when calculating the carrier 

density in various valleys. The Butcher and Fawcett report [25] 

also supported this idea. The only factor that affects the total 

electron distribution in the crystal is the electron temperature in 

the central valley. In accordance with Hilsum [33], the upper 

valley's carrier density can be written as follows: 
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where the total carrier concentration is given by 

1 2n n n   and   is the energy gap between the central and 

satellite valley minima. Hence the carrier density in the lower 

valley is given by 

 

1 2n n n  .                                                                       (9) 
 

We rephrase Eq. (4) as the following polynomial in order 
to solve it for the study of the convective nature of two stream 

instability. 
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Prior to delving deeply into the dynamics of convective 

instability, we want to confirm that the system is experiencing 

convective instability. We now use the relation [22] to 
determine the real part of the longitudinal electrokinetic power 

flow density of the wave in order to prove the existence of 

convective instability. 

 
* *

1 1 1 1Re( )
2

K

V J V J
P


 .                                                  (11) 

 

where 1V  is the r.f. electrokinetic potential which for the 

problem under study is found to be 
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The r.f. current density becomes 
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*

1V  and *

1J  represent the complex conjugate of 1V  and 1J  

respectively. Assuming Re Im( )k k ik   and ω  as real quantity, 

we obtain the quantum modified real part of the longitudinal 

electrokinetic power flow density for a two stream instability 

using Eqs. (11, 12, 13) as: 
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where the suffix c denotes convective instability and 
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From this expression it can be inferred that Re( )K cP  

becomes negative only when the phase velocity of the 

propagating mode φ Re( ω / )v k  is less than the drift velocity of 

the electrons in the central valley 0ν j . Hence the convective 

instability is possible under the physical condition discussed 

above. 

 

3.  Results and discussion 
 

To examine the convective nature of two stream 

instability, we have solved Eq. (10) numerically for complex 

Re Im( )k k ik   and real ω . For this purpose we consider n-

type GaAs as our medium of study. Here we use the possible 

realistic values of some physical parameters listed below in 

Table 1. 

To investigate numerically the wave spectrum of all 

possible modes generated due to two stream interactions in n-

GaAs, we have applied electrostatic field ranging from 2.6×103 

to 4×103 kV m-1. This range of electrostatic field is quite safe 

as the damage threshold for n-GaAs is of the order of 4×104 kV 

m-1. Use of above parameters (Table 1) yields the drift velocity 

of central valley electrons ranging from 1:3×105 to 2:3×105 ms-

1. The phase velocities of all six possible modes are obtained in 

the range 10–105 ms-1. Thus in the studied case 01v  is always 

found more than phase velocity of the wave. Thus the 

possibility of convective instability is established. 

The signature of the imaginary and real parts of wave 

vector ( Imk  and Rek ) decides the nature of wave viz., 

amplifying or attenuating and backward or forward 

propagating. If the signature is positive ( Im Re, 0k k  ) the mode 

will be forward amplifying mode otherwise backward 

attenuating mode ( Im Re, 0k k  ). The propagation 

characteristics of all possible modes of two stream instability 

are illustrated in Figs. 1, 2, 3, 4, 5, 6. 

Figure 1 shows that the first mode is backward attenuating 

mode both in presence ( 0H  ) and absence ( 0H  ) of 

quantum parameter-H. From this figure, we observe that the 

presence of quantum effects lowers the magnitude of phase 

velocity of this mode by 4-orders.  

 

Table 1: Material constant of n-GaAs ( 0T  300 K). 
 

Parameters m1/m0 m2/m0 εl  ε   (eV) ωl (eV) θD (K) 

Values used in the 
present analysis 

0.072 [21] 0.364 [21] 13.5 [21] 11.6 [21] 0.36 [21] 0.036 [21] 420 [21] 

Values available in 
the literature 

0.065 [35] 0.35 [35] 12.5 [36] 10.82 [36] 0.29 [37] 0.036 [38] 378 [39] 
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Figure 1: Rek , Imk  versus E  for I-mode (solid and dashed lines represent curves corresponding to with and without quantum corrections). 

 

 
Figure 2: Rek , Imk  versus E  for II-mode (solid and dashed lines represent curves corresponding to with and without quantum corrections). 

 

Further in classical plasma, the phase velocity increases 

almost linearly with externally applied electric field E  

whereas in quantum plasma, it first increases to attain maximal 

value at E  3:6×103 kVm-1 and then starts reducing with 

increasing values of E . The magnitude of attenuating constant 

of this mode is found to be high in classical plasma than in 

quantum plasma. In quantum plasma, it is nearly independent 

of E  up to E  3:3×103 kVm-1, afterwards it grows rapidly 

with E , while in classical plasma, attenuating constant 

initially decays with E , achieves the minimal value at E 

3:6×103 kVm-1 and then it starts increasing with E . 

One may infer from Fig. 2 that second mode has backward 

propagation with amplifying nature under both classical and 

quantum regimes. In quantum regime, similar to first mode, the 

phase velocity of this mode also reduces by 4 orders. It may 

also be inferred from amplification characteristics that the 
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qualitative variation of amplification coefficient ( Imk ) is 

identical in both regimes. The magnitude of amplification is 

found to be a decreasing function of E  up to E  3:6×103 

kVm-1 but for E  3:6×103 kVm-1 it is converted to an 

increasing function of E . It is noted that the magnitude of 

amplification is higher in classical plasma by 2-orders than 

quantum plasma. 

 

 
Figure 3: Rek , Imk  versus E  for III-mode (solid and dashed lines represent curves corresponding to with and without quantum corrections). 

 

 
Figure 4: Rek , Imk  versus E  for IV-mode. 

 

The phase and gain profiles of third mode are displayed in 

Fig. 3. This mode is forward attenuating in nature. The 

qualitative variations of phase velocity as well as amplification 

coefficient do show only marginal deviation in magnitude if 

one shifted from classical to quantum plasma system. The 

phase velocity of this propagating mode increases almost 

linearly with increasing electrostatic field. For E  3:8×103 

kVm-1 one obtains little higher phase velocity in quantum 

plasma. But for E  3:8×103 kVm-1 phase velocity becomes 

independent of quantum correction. The gain profile of this 
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mode depicts that increase in magnitude of E  reduces the 

attenuation rate. Thus the attenuating constant is large for 

lower values of E  and small for higher values. Inclusion of 

quantum effects reduces the attenuating constant only up to 

E   3:5×103 kVm-1 and for E  3:5×103 kVm-1 it becomes 

ineffective. 

Figure 4 depicts the variation of phase and amplification 

rates of fourth mode. It is seen from this figure that quantum 

corrections have no impact on the propagation characteristics 

of fourth mode. The fourth mode has forward amplifying 

propagation with such a phase velocity which increases as we 

increase the magnitude of electric field E . The magnitude of 

amplification coefficient is initially found independent of E  

up to E  3:0×103 kVm-1 and then it starts increasing with E .  

 

 
Figure 5: Rek , Imk  versus E  for V-mode. 

 

 
Figure 6: Rek , Imk  versus E  for VI-mode. 

 

The propagation characteristics of the two novel modes of 

two stream instability induced due to quantum corrections are 

illustrated in Figs. 5, 6. The fifth mode is forward amplifying 

mode while sixth mode has forward propagation with 
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attenuation. The phase velocities of both the novel modes have 

increasing nature for lower magnitude of applied electric field 

(only up to E  3:6×103 kVm-1). For high electric field when 

E  3:6×103 kVm-1, it converts to a function of reducing 

nature. On the other hand, the magnitude of amplification 

coefficient of fifth mode decreases up to E  3:6×103 kVm-1 

and for E  3:6×103 kVm-1 it starts increasing rapidly with E ; 

whereas the attenuating constant of sixth mode is initially 

almost independent of E  but for higher magnitude of E , it 

suddenly starts increasing. 

 

4.  Conclusions 
 

The goal of the current analysis is to present how the 

quantum parameter-H affects two stream instability in n-GaAs 

semiconductor plasma when an external electric field is 

introduced. The dispersion relation obtained using the QHD 

model of plasmas, as stated in Eq. (4), is the primary source of 

this work's findings. The presentation's findings show that the 

introduction of quantum effects in the n-type GaAs 

semiconductor plasma medium causes two new modes to 

emerge and drastically alters the properties of all the pre-

existing modes. The analytical investigation of the real part of 

longitudinal electrokinetic power flow density under quantum 

regimes also establishes the existence of two stream instability. 

Additionally, it is deduced that three of the six potential modes 

of two stream instability are amplifying in character. It is 

observed that most modes' phases are lowered by many orders 

of magnitude when quantum effects are present, allowing them 

to stay in the medium for longer. These findings are crucial in 

defining the medium's characteristics. There are numerous 

significant device potentialities in the investigation of two 

stream instability in plasma. In order to better understand the 

physical nature of two stream instability in semiconductor 

quantum plasma, it is believed that the analysis presented in 

this study would be useful. 
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