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ABSTRACT 
The quantum hydrodynamic model is used to report the phonon-plasmon interaction in a magnetized 
inhomogeneous semiconductor quantum plasma. An evolution equation for the acoustic wave's gain 
coefficient is obtained by using a quantum modified dispersion relation. The scale length of density 
variation parameter (L) and the non-dimensional quantum parameter (H) are used in this work to 
account for inhomogeneity and quantum effects, respectively. These factors, along with the angular 
frequency ω , magnetic field orientation θ , and propagation distance z, are examined in relation to the 

acoustic wave's gain characteristics. These studies are conducted both with and without a magnetic 
field for density patterns that fluctuate linearly and quadratically. The findings suggest that the gain 
characteristics of the acoustic wave in the inhomogeneous semiconductor quantum plasma would be 
determined mostly by the magnetic field and linearly or quadratically variable density structures. 

 
1.  Introduction 

 

The ability of acoustic waves to interact significantly with 
plasma particles is their dynamical property in plasma 

environments, setting them apart from other electromagnetic 

spectrum waves [1-4]. In order to explain the electronic, 

optical, and transport properties of semiconductor materials 

and their use in the fabrication of devices at the ultrasonic 

range, it is crucial to have a thorough understanding of the 

interaction between the plasma wave and lattice vibrations 

(acoustic wave) in the semiconductor plasma [5–9]. By 

exchanging energy between phonons and plasmons, this 

interaction amplifies or attenuates acoustic waves in 

semiconductor plasma medium. Acoustic wave amplifiers [10–
12], acoustic charge transport [13] based on the acousto-

electric effect, acoustic wave resonators [14], and other 

intriguing and noteworthy phenomena have been better 

understood as a result of this. It has been discovered that the 

collective oscillation of the lattice can readily be coupled 

strongly with plasma wave through piezoelectricity in 

piezoelectric semiconductors, which are excellent candidates 

for converting mechanical energy to electrical energy or vice 

versa [15–17]. Furthermore, the crucial spectral features of the 

acoustic wave propagation in the semiconductor plasma are 

provided by the medium's piezoelectricity. Based on the 

piezoelectric interaction between phonons and plasmons, a 
number of acoustic wave characteristics have been thoroughly 

investigated in this context [14, 18]. 

The study of many facets of acoustic waves in plasma 

medium has attracted a lot of attention because of its possible 

uses in the production of acoustic devices. Numerous studies 

have been conducted to examine the properties of acoustic 

waves in plasma from different perspectives [19–22]. 

However, the plasma medium is typically taken to be 

homogeneous in the majority of these findings. However, the 

majority of genuine plasmas are not homogenous, and the 

properties of waves alter depending on the local environment 

as they pass through them. Temperature and/or density 

gradients may be the cause of the plasma's inhomogeneity. 

Therefore, it is interesting to investigate the potential 

implications of inhomogeneity on the basic behavior of 

acoustic waves non plasma medium. A lot of scholars have 

recently focused on studying acoustic phenomena in 

inhomogeneous plasma medium [23–25]. 

However, a significant area of study has been the 
properties of acoustic wave propagation in the magnetized 

plasma. Since the properties of plasmas can change when the 

magnetic field is applied, it is well known that plasmas are 

significantly influenced by the magnetic field [26–28]. One of 

the earliest areas of study in plasma physics is the behavior of 

various waves in plasmas when a magnetic field is present. As 

a result, numerous physicists have written pertinent studies 

using a variety of plasma models [29–31]. 

The electrical characteristics of semiconductor devices are 

the most significant and far-reaching technological 

implications of contemporary solid state physics. The 
semiconductors used in the majority of these devices have non-

uniform carrier concentrations. It is well known that the 

existence of a Lorentz force prevents a system from achieving 

perfect homogeneity under crossed fields geometry. 

Additionally, a complete homogenous crystal cannot be grown 

experimentally. Conversely, non-uniform doping or exposure 

to non-uniform radiation can cause a material to become 

inhomogeneous. A plasma current or particle drift is present if 

the system has a gradient of density, temperature, pressure, 

magnetic field, etc.; if not, the gradient alters the particle drift 
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or plasma current when a dc electric field is present. In 

semiconductors, impurity doping can typically result in the 

development of linearly or quadratically changing plasma 

density patterns. These kinds of structures with different 

plasma densities increase the energy of drifting carriers by 

several orders of magnitude. In order to investigate the 

phonon-plasmon interaction through piezoelectricity and its 

effects, we choose the inhomogeneous semiconductor plasma 

as our medium in this research. Impurities in the 
semiconductor make it denser by injecting free plasma carriers 

in excess. Quantum effects are also not negligible in such a 

thick plasma [32–34]. Because of its enormous nano-scale 

applicability, semiconductor quantum plasma has thus 

garnered a lot of interest from plasma researchers for over 10 

years [35, 36]. Furthermore, when a uniform magnetic field is 

present in the surrounding environment, the semiconductor 

quantum plasma may support a range of plasma waves. 

However, there aren't many reports in the literature about this 

topic [37–39]. The ratio of the plasmon energy to the Fermi 

energy of free carriers is how the non-dimensional quantum 

parameter-H affects plasma media. According to recent 
findings [40, 41] that mention the quantum parameter-H, its 

existence may have a major impact on the wave properties of 

semiconductor plasmas. Therefore, it would appear beneficial 

to thoroughly examine how the magnetic field, quantum 

parameter-H, and inhomogeneity affect the phonon-plasmon 

interaction in the piezoelectric semiconductor plasma. 

 

2.  Theoretical formulations 
 

Our goal is to examine how the magnetic field affects the 

phonon-plasmon interaction in the quantum plasma of an 

inhomogeneous semiconductor. For this, we consider an n-type 

piezoelectric semiconductor as medium, whose carrier charge 

and effective mass are e  and m  and assume the shear 

acoustic wave and electron plasma wave to be propagating in 

the z-direction. Furthermore, the medium is subjected to a dc 

electric field 
0E  along the negative z-direction and magneto-

static field 
0B  at an arbitrary orientation θ  with propagation 

direction z in the x-z plane. Under plane wave approximation, 

we assume that all perturbed quantities, responsible for the 

interaction of phonons and plasmons, vary as: exp[ (ω )]i t kx ; 

here, ω  and k  are the angular frequency and wave vector, 

respectively. 

Using a scale length of density variation parameter 

0 0( )( ) / ( ))L z n n z  , we take into account the consequences of 

inhomogeneity in our investigation of the phonon-plasmon 

interaction in inhomogeneous plasma media. Here, 0 ( )n z  is 

the varying plasma density structure, essentially a function of 

propagation distance z. The variation in the plasma density 

structure 0( ( ))n z  may be considered either as linear or 

quadratic along the direction of wave propagation. The plasma 

density structures are given by 

 

0 0( ) [1 ( )]n z n f z  ; 

 

in which ( )
( )

z
f z

L z
  is for the linearly varying profile, 

and 
2

2
( )

( )

z
f z

L z
  is for the quadratically varying profile. 

Here, 0n  is the ambient plasma density at 0z  . 

 

We have taken into consideration the quantum 

hydrodynamic description of the plasma in order to 

characterize the nature of plasmons in the medium. The 

continuity and momentum transfer equations are the two key 

components of this paradigm. The addition of components 

related to Fermi degenerate pressure and Bohm potential to the 

momentum transfer equation distinguishes the quantum 

hydrodynamic (QHD) model from the classical fluid model. 

Therefore, the QHD model's set of linearized equations for an 

inhomogeneous medium with a magnetic field present can be 

expressed as follows: 
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                                         (2) 

 

Here, 1n , 0v , ν , and  stand for the perturbed electron 

number density, drift velocity of electrons due to dc 

electrostatic field 0E , momentum transfer collision frequency, 

and Planck constant, respectively. 0ω ( / )c eB m  is the electron 

cyclotron frequency due to applied magnetic field 0B . 
2

1 1( ) FP z mv n  is the Fermi pressure with 1/ 2(2 / )F B Fv k T m  

as the Fermi velocity; Bk  and FT  are the Boltzmann constant 

and Fermi temperature. 

In the present theory, we consider non-dimensional 

quantum parameter ( )H z  (= plasmon energy/Fermi energy) 

and scale length of density variation ( )L z  as important 

parameters. The quantum parameter- takes care of the effects 

of quantum corrections through Fermi degenerate pressure and 

Bohm potential. Hence, continuity and momentum transfer 

equations of the QHD model in terms of parameters ( )L z  and 

( )H z , under plane wave approximation, may now be rewritten 

as: 
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 .                                       (4) 

 

Here, 2 1/ 2

0ω ( ) [ ( ) / ε]p z e n z m  is the electron plasma 

frequency, in which 0ε( ε ε )L  is the permittivity of the 

medium with lattice dielectric constant εL . 

( ) ω ( ) / 2p B FH z z k T  is the non-dimensional quantum 

parameter measuring the relevance of quantum effects and is 

proportional to quantum diffraction. 

As we are interested in electrostatic or space-charge 

branch of the spectrum, we will consider only the z-component 

of time varying velocity zv , which may be determined by 

using the QHD relation (Eq. (4)) for the considered field 

geometry, as: 
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Here, ω ω sinθcx c , ω ω cosθcz c , and 2 / νF FD v  

stands for the diffusion constant at Fermi temperature. 

The last term in the expression of (ω, )QF k  stands for the 

contribution made by cyclotron frequency of electrons in the 

medium induced due to the presence of external magnetostatic 

field 
0B  applied at an arbitrary angle θ  with propagation 

direction z in the x-z plane. This term results from the 1 ωcv   

term on the LHS of the QHD relation (Eq. (4)). We may infer 

from this last term that for θ 0 , ω ( ω sinθ)cx c  becomes 

equal to zero, then this term vanishes. Hence, one may 

conclude that applied external magneto-static field 
0B  does not 

affect the interaction when θ 0  (
0

ˆB k z  in our case) or in 

other words when magneto-static field 
0B  is applied along the 

direction of wave propagation. Therefore, the magnetic field (

0B ) should be applied across the direction of wave propagation 

in order to evaluate its effect on the wave spectrum. It has been 

discovered that transverse magneto-static fields significantly 

improve the acousto-electric effect, especially in III-V 

semiconductors like InSb, GaSb, and GaAs. This is because a 

sufficiently large transverse magnetic field can induce the 

creation of high resistance domains. For a given 0B , the 

enhancement of the acousto-electric effect becomes greater as 

the electron mobility increases. The particular case of n-InSb is 

of interest because, without 0B , avalanche breakdown 

occurred before any acousto-electric effects could be observed. 

Now under plane wave approximation, substituting Eqs. 

(3) and (5) in Maxwell’s equation 1.D en   , the 

displacement vector may be obtained as: 
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It is one of the two relations that we require in order to 

obtain the dispersion relation that we desire. 

Coherent lattice vibrations cause the acoustic wave to 

travel through semiconductors. Phonons can be used to explain 

these vibrations. Through the piezoelectricity of semiconductor 

media, the plasma wave efficiently accompanies the acoustic 

wave. The lattice is displaced when the semiconductor medium 

is subjected to stress T because of its elastic nature. We employ 

the phenomenological theory created by White [10] and Steele 

and Vural [42] to describe the equations that control such 

displacements and the waves connected to them. Because we 

have considered shear acoustic wave propagating along the z-

direction, we may consider its displacement xu  in the x-

direction that is related to a strain component S  following the 

relation: 

 

1

2

xu
S

z





.                                                                       (7) 

 

The lattice and electric displacement motion can be 

represented using the one-dimensional piezoelectric crystal 

electromechanical equations as follows: 

 
2 2( ρω ) x zCk u ikeE                                                     (8) 

 

ε 2zD E eS  .                                                                (9) 

 

The electric displacement component in terms of phonons 

can now be determined by applying Eqs. (7) and (8) in (9). 

 
2 2
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z
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D E
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.                                       (10) 

 
The required phonon-plasmon interaction in the 

piezoelectric inhomogeneous semiconductor quantum plasma 

in the presence of a magnetic field is expressed by the quantum 

modified dispersion relation, which may be obtained by 

comparing Eqs. (6) and (10). 
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Here, 2 2 / εK e C  is the dimensionless electro-

mechanical coupling constant and 1/ 2( /ρ)sv C  is the velocity 

of sound in the medium. Relation (11) suggests that the 

coupling between acoustic and quantum plasma waves in an 

inhomogeneous semiconductor plasma medium is caused by 

this electromechanical coupling constant. It also serves as a 

gauge for piezoelectric strength. As 0e  , i.e., in the absence 

of piezoelectricity, the coupling parameter vanishes and Eq. 

(11) leads to two independent modes, which are: 

 
2 2 2(ω ) 0sk v                                                                (12) 
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    

.                   (13) 

 

Inhomogeneity, quantum correction, and magnetic field 

have no effect on the normal sound mode propagating through 

an elastic medium, as represented by Eq. (12). In contrast, the 

plasma mode, represented by Eq. (13), is significantly 

impacted by inhomogeneity, quantum parameter-H, and 
magnetic field. Therefore, the interaction between electrons 

and acoustic vibrations in the medium is represented by Eq. 

(11). 

One of the basic interaction processes in piezoelectric 

semiconductors is the interaction between mobile electrons and 

acoustic vibrations. The interaction provides valuable insights 

into the host medium's band structure. Commercial 

applications of the amplification of acoustic waves through the 

application of a dc electric field to piezoelectric 

semiconductors include the creation of oscillators, delay lines, 

and acousto-electric amplifiers. The following is the 

fundamental physics of acoustic wave amplification in 

piezoelectric semiconductors: In essence, the regularly stressed 

areas in a piezoelectric semiconductor create an ac electric 

field when an auditory wave passes over them. This causes 

conduction electrons to react, which causes the electrons to be 

redistributed in space. At the same face where the sonic wave 

leaves the sample, the electrons ultimately group together. A 

dc field is created in the sample as a result. The acoustic wave 

is attenuated if a dc electric field is allowed to flow because it 
transfers energy from the wave to electrons. Conversely, if the 

electrons' drift velocity is somewhat greater than the wave 

velocity, a dc current will amplify an acoustic wave. On the 

potential curve's back slopes, the electrons will subsequently 

clump.  

If the dispersive and dissipative properties are completely 

understood, the medium's properties and wave characteristics 

may be better explained. Since the principle aim of this paper 

is to achieve a better insight to these properties, we shall study 

the amplification characteristics of the acoustic wave in 

piezoelectric semiconductor medium by evaluating its 

attenuation coefficient ( α ). The dispersion relation Eq. (11) is 

a fourth order polynomial with the complex coefficient in 

terms of complex wave vector k . The real part of k  will 

deliver the dispersive properties whereas the imaginary part 

will cater the dissipative property of the wave. It is not easy to 

solve a fourth order polynomial analytically. Hence, we 

evaluate the acoustic gain per unit length ( αω / sv ) in the 

piezoelectric inhomogeneous semiconductor quantum plasma 

by following the method reported by White under the 

assumption that collision frequency dominates over all other 

frequencies ( 0ω, νkv ) [10]. Under this physically valid 

approximation for the semiconductor, the dispersion relation 

(Eq. (11)) may be rewritten as: 

 
2 2 2 2

2 2

0 2
1 ω 1 1 ( ) 1

ω ( ( )) φ ( ( ))4ω ( )

s F F

p

kv iD k k vi i
iK kv H z

kL z kL zz

      
                      

 

                           

1
2 2 2

2

0 2

ω ( )
1 ω 1 1 ( ) 1

φ ( ( )) ( ( )) φ ( ( ))4ω ( )

R F F

p

z iD k k vi i i
i kv H z

kL z kL z kL zz


          
                            

.      (14) 

 

Here, 2ω ( ) ω ( ) / νR pz z  is the dielectric relaxation 

frequency and 2 2 2 2φ (1 ω / ν ) /(1 ω / ν )c cz   . 

Now to obtain the solution of the above dispersion relation 

(Eq. (14)), we will follow the standard approximation reported 

by Steele and Vural [42], which is ( /ω) 1 αskv i  , where α , 

the gain per radian, 1 . Using this approximation, the 

dispersion relation (Eq. (14)) leads to an expression for gain 

per unit length in terms of attenuation coefficient 1 , which 

may be obtained as follows: 
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. 

 

Since 2α 1 , therefore by neglecting 2α  from LHS and then equating the imaginary parts from both sides, the above 

equation reduces to the following form: 
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 .            (15) 

 

Positive values of αω / sv  imply the amplification of the 

acoustic wave, and negative values stand for attenuation 

or loss. Here, 2ω /DF s Fv D  is the diffusion frequency at 

Fermi temperature and 0γ ( / ) 1sv v  . The above equation 

expresses the gain coefficient, which decides the amplification 

of the acoustic wave, in terms of quantum parameter-H, scale 

length of density variation L , and magnetic parameter φ . 

For classical homogeneous plasma medium ( 0H  ,

0 ( ) 0n z  , this dispersion relation (Eq. (15)) reduces to Eq. 

(8-44) of Steele and Vural [42]. Hence, this quantum modified 

dispersion relation for inhomogeneous medium is expected to 

give modified results. 

 

3.  Results and discussion 
 

Our main goal in this research is to investigate the acoustic 

wave gain profiles in the magnetized inhomogeneous 

semiconductor quantum plasma. This can be achieved by 

considering inhomogeneity and quantum corrections through 

the scale length of density parameter L  and non-dimensional 

quantum parameter-H. n-InSb semiconductor, subjected to an 

external magnetic field, is taken as a suitable medium for our 

numerical study. The typical parameters of the n-InSb 

semiconductor plasma at 77K are: 00.014m m , where 0m  is 

the free electron mass, ε 17.54L  , 11ν 3.5 10  s–1, 0.054e 

Cm–2, and 3ρ 5.8 10  kgm–3. 

We have displayed in Figures 1–5 the dependence of gain 

per unit length αω / sv  on quantum parameter-H, scale length 

of density variation parameter- L , propagation distance z, 

angular frequency ω , and orientation angle θ  of magnetic 

field ( 0B ). All these curves are drawn both for linearly and 

quadratically varying density structures (LVDS and QVDS). 

Figure 1 depicts the change in gain per unit length αω / sv  

due to non-dimensional quantum parameter-H. Four curves in 

the figure correspond to the absence ( 0 0B  ) and presence (

0 0B  ) of the magnetic field, for LVDS and QVDS. The 

figure infers that the magnitude of ( αω / sv ) is a decreasing 

function of quantum parameter-H in all cases. The decreasing 

nature of ( αω / sv ) reflects that as the magnitude of quantum 

parameter-H increases, the rate of transfer of energy between 

phonons and plasmons reduces, which in turn makes the 

plasma wave more energetic and subsequently acoustic wave 

becomes more stable. It is also observed from this figure that, 

at lower values of H, (αω / sv ) is larger for LVDS, while for 

QVDS, ( αω / sv ) is larger towards higher H. This figure also 

illustrates that the magnitude of ( αω / sv )is smaller for 0 0B   

for both the density structures, i.e., LVDS and QVDS. Hence, 

one may conclude that the applied magneto-static field has a 

stabilizing effect on phonon-plasmon interaction in the 

inhomogeneous semiconductor quantum plasma. 

 

 
Figure 1: αω / sv  versus H  at 0.005L  m, 0.02z  m, 

0 0.5B  T, and θ π / 3 . 

 

 

 
Figure 2: αω / sv  versus L  at 0.2H  , 0.02z  m, 0 0.5B  T, 

and θ π / 3 . 
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Figure 2 highlights the response of gain per unit length (

αω / sv ) of the acoustic wave with increasing scale length of 

density variation parameter L  in magnetized ( 0 0B  ) and un-

magnetised ( 0 0B  ) inhomogeneous semiconductor quantum 

plasmas. Initially with L , all the four curves start increasing 

sharply with different inclinations, reach to a maximum value, 

and then start decreasing slowly. For 0.035L  m, the gain per 

unit length of the acoustic phonons becomes nearly 

independent of density gradient through scale length L . The 

influence of the magnetic field on ( αω / sv ) is found to be of 

retarded nature. It is also observed that the magnitude of 

maximum gain is identical in both cases, i.e., for LVDS and 

QVDS. But the magnitude of L  corresponds to maximum 

gain, shifts toward higher values for QVDS. 

 

 
Figure 3: αω / sv  versus z at 0.6H  , 0.01L  m, 0 0.5B  T, 

and θ π / 3 . 

 

The gain per unit length ( αω / sv ) of the acoustic wave, as 

a function of propagation distance z, is depicted in Figure 3 in 

the presence and absence of 0B  in the inhomogeneous 

semiconductor quantum plasma. One may infer from this 

figure that increment in z consistently makes interaction more 

and more intense resulting in the increment in the magnitude of 

gain per unit length, up to 0.13z  m for LVDS and 0.035z 

m for QVDS. This results in a shift of maximum gain point 

towards smaller z for QVDS. On further increasing z, (αω / sv

)starts decreasing for all combinations. The nature of such 

reduction is slow in the case of LVDS and rapid for QVDS. 

Further, it is observed that as the propagation distance 

increases, magnetic field dominates the instability 

characteristics of phonon-plasmon interaction by reducing (

αω / sv ). For QVDS, gain characteristics become independent 

of applied magnetic field for 0.4z  m. 

The effect of wave angular frequency ω  on (αω / sv ) in 

the case of 0 0B   and 0 0B   for LVDS and QVDS is 

depicted in Figure 4. It is found that the gain per unit length of 

the acoustic wave varies with x in an identical manner for all 

combinations of parameters. It increases initially, attains 

maxima, and then starts decreasing with ω . The magnitude of 

ω  at which maximum gain occurs can be expressed by 

 

2 2
2 2

2
ω ω ( )ω /3 1 ( )

4ω ( )

F
R DF

p

k v
z H z

z

 
  

 
 

.  

 
Figure 4: αω / sv  versus ω  at 0.6H  , 0.01L  m, 0.02L  m, 

0 0.5B  T, and θ π / 3 . 

 

This condition infers that the frequency corresponding to 

maximum gain is not influenced by magnetic field and this fact 

is in concurrence with the depiction in figure. Furthermore, the 

presence of magnetic field reduces the magnitude of αω / sv  

and its effect vanishes at 11ω 5.5 10  s-1 in the case of LVDS. 

When one considers QVDS, the magnitude of ( αω / sv ) and 

frequency of maximum gain both shift towards higher values. 

 

 
Figure 5: αω / sv  versus θ  at 0.6H  , 0.01L  m, 0.02L  m, 

and 0 0.5B  T. 

 

Figure 5 displays the influence of orientation θ  of 

magnetic field on gain per unit length (αω / sv ) of the acoustic 

wave for both the density structures, i.e., LVDS and QVDS. It 

may be observed from this figure that as the orientation angle 

θ  increases, (αω / sv ) reduces up to oθ 72  for both the 

density structures; but magnitude of ( αω / sv ) is always larger 

for QVDS. On further enhancing θ  (i.e., oθ 72 ), the 

acoustic wave suffers strong damping. The rate of damping is 

again large in the case of QVDS. The physical mechanism 

associated with such crossover from wave amplification to 

attenuation is that as the orientation angle θ  increases, the 

magnitude of cyclotron frequency of electrons (ω ω cosθcz c ) 



RP Current Trends In Applied Sciences 
 

 

Page | 61  

 

along the direction of wave propagation reduces. This, in turn, 

decreases the drift velocity of electrons; therefore, reduction in 

gain of acoustic wave occurs. Furthermore, when drift velocity 

becomes smaller than acoustic velocity, the acoustic wave 

starts attenuating. 

 

4.  Conclusions 
 

The phonon-plasmon interaction in the magnetized 
inhomogeneous semiconductor quantum plasma system is 

theoretically demonstrated in this paper. We have examined 

how the magnetic field affects this interaction for density 

configurations that fluctuate linearly and quadratically. We 

have used the QHD model to establish the quantum modified 

dispersion relation to address the interaction between phonons 

and plasmons. The gain coefficient under the collision-

dominated limit has also been analytically computed. 

Calculations reveal that the gain coefficient is influenced by 

the density gradient and its variation patterns, as well as the 

magnetic field and its orientation. According to the current 
study, the linearly variable density structure (LVDS) has a 

large gain magnitude in weakly quantized plasma, or at lower 

values of H. In contrast, the quadratically varying density 

structure (QVDS) is found to be more effective in highly 

quantized plasma. Moreover, as one moves from LVDS to 

QVDS, the maximum gain point shifts towards lower values of 

propagation distance z, higher values of scale length of density 

variation L , and angular frequency ω . It is very interesting 

that the crossover from wave amplification to attenuation 

occurs as the orientation angle of magnetic field θ  becomes 

more than 72o. Therefore, it is believed that the current 
findings would help unravel the origin of the acoustic wave 

and its stability/instability regimes in the semiconductor 

quantum plasma with magnetized inhomogeneity. One could 

draw the conclusion that our findings would be helpful in the 

creation of minuscule electronic devices such as traveling wave 

amplifiers. 
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