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ABSTRACT 
A detailed analytical study of stimulated Brillouin scattering (SBS) in an electrostrictive semiconductor 
is carried out using the hydrodynamic model in conjunction with the coupled-mode approach. The total 
induced current density, including contributions from diffusion, and the effective Brillouin 
susceptibility are derived for off-resonant laser excitation. The analysis examines the qualitative 
behavior of the Brillouin gain and transmitted intensity as functions of excess doping concentration and 
applied magnetic field. The study aims to optimize the doping level and magnetic field to achieve 
maximum Brillouin gain at pump intensities well below the optical damage threshold. It is observed 
that immersing a moderately doped semiconductor in a sufficiently strong transverse magnetic field 
can lead to resonant enhancement of the Brillouin gain, provided the generated acoustic mode lies 
within the dispersion-less regime. 

 
1.  Introduction 

 

Stimulated scattering processes are nonlinear interactions 

in which an incident wave is transformed into a scattered wave 

with a frequency shifted either upward or downward. The 

energy difference between the incident and scattered photons is 

exchanged with the nonlinear medium. Different types of 

scattering processes can occur, each involving distinct internal 

excitations within the medium. In particular, stimulated 

Brillouin scattering (SBS) arises from interactions with 

acoustic waves in solids, liquids, or gases, or with ion-acoustic 

waves in plasmas [1–6]. 

Stimulated Brillouin scattering (SBS) serves as an 

important tool for probing acoustic phonons in gases, liquids, 

and solids. The acoustic waves generated in solids through 

SBS are among the most intense high-frequency sound waves, 

which can occasionally cause material damage [7]. Recently, 

SBS has garnered significant interest due to its wide range of 

applications, including optical phase conjugation (OPC), real-

time holography, pulse compression, and laser-induced fusion 

[8–10]. For OPC, backward SBS is particularly advantageous 

because it operates at low threshold pump intensities, exhibits 

minimal frequency shifts, and provides high conversion 

efficiency [8]. In laser-induced fusion, however, SBS poses a 

challenge as it can deflect pump energy away from the target, 

thereby reducing energy absorption. Consequently, controlling 

or minimizing SBS is crucial in such experiments. 

Despite over three decades of research on SBS, significant 

discrepancies remain between theoretical predictions and 

experimental observations [9–12]. Experiments with short, 

low-intensity laser pulses indicate that SBS can initiate below 

the theoretically predicted threshold, while studies employing 

high-intensity radiation show that SBS signals saturate at levels 

much lower than expected. These inconsistencies highlight the 

need for more comprehensive theoretical models of SBS. 

In most studies of nonlinear interactions, nonlocal 

effects—such as the diffusion of excitation density, which 

contributes to changes in the nonlinear refractive index—are 

often neglected. However, carrier diffusion is expected to 

significantly influence the nonlinearity of the medium, 

particularly in high-mobility semiconductors, such as III-V 

compounds. Therefore, incorporating carrier diffusion into 

theoretical analyses of nonlinear phenomena is important from 

both fundamental and practical perspectives, and has recently 

attracted considerable attention [13–16]. Using a 

hydrodynamic model of semiconductor plasmas, we 

investigate the SBS phenomenon via the third-order optical 

susceptibility, arising from finite induced current densities and 

electrostrictive (ES) polarization, in transversely magnetized n-

type semiconductors, where carrier diffusion is an inherent 

effect. The diffusion of charge carriers is included by 

expressing the total current density as the sum of conduction 

and diffusion contributions. 

The motivation for the present study arises from the 

observation that the diffusion of excess carriers can 

significantly alter the nonlinearity of the medium. In the 

context of high-power laser interactions, investigating high-

mobility semiconductor plasmas becomes particularly 

important, as it can provide deeper insights into scattering 

mechanisms in plasma media and help bridge the gap between 

theoretical predictions and experimental results. In this study, 

the semiconductor is assumed to be subjected to an external 

magnetic field, which is expected to reduce the SBS threshold 

and substantially enhance the Brillouin gain. 
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2.  Theoretical formulation 
 

This section presents the theoretical formulation of the 

nonlinear optical susceptibility and, based on it, the steady-

state Brillouin gain for the Stokes component of the scattered 

electromagnetic wave in a Brillouin-active medium. We 

consider a sample of n-type, nearly centrosymmetric 

semiconductors, such as n-InSb, placed in a uniform 

magnetostatic field 
sB  applied along the z-axis. The 

semiconductor is treated as a source of a homogeneous, infinite 

plasma subjected to a large-amplitude, spatially uniform 

electromagnetic pump wave—either a high-frequency laser or 

microwave—propagating along the x-axis. The electric field of 

this spatially uniform pump wave is represented by 

0 0 0exp( )E E i t   . A centrosymmetric crystal is chosen so 

that nonlinearities arising from piezoelectric and electro-optical 

effects can be safely neglected relative to those resulting from 

electrostriction. 

In the hydrodynamic regime, where kal <<1 (with k being 

the acoustic wave number and l the carrier mean free path), the 

fundamental equations used for the analysis are: 
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Equations (1) and (2) describe the zeroth- and first-order 

oscillatory fluid velocities of an electron with effective mass m 

and charge e, where ν is the electron collision frequency. effE  

represents the effective electric field, which includes the 

Lorentz force 0( )sv B  in the presence of an external magnetic 

field sB . Equation (3) is the continuity equation incorporating 

diffusion effects, with n0 and n1 denoting the equilibrium and 

perturbed carrier densities, respectively, and D the diffusion 

coefficient. Equation (4) governs the lattice motion in the 

crystal, where ρ is the mass density, u is the lattice 

displacement, γ is the electrostrictive coefficient, Γa is the 

phenomenological damping parameter of the acoustic mode, 

and C is the elastic constant. Equation (5) shows that the 

acoustic wave generated by electrostrictive strain modulates 

the dielectric constant, producing a nonlinear induced 

polarization esP . At very high field frequencies, which are 

much larger than the natural frequencies of electron motion in 

the medium, the polarization can be determined by neglecting 

electron–electron and electron–nucleus interactions. 

Consequently, the electric displacement in the presence of an 

external magnetostatic field is given by effD E   [17]. The 

space charge field Ex is obtained from Poisson’s equation (6), 

where ε1 is the dielectric constant of the crystal. In these 

equations, the contribution from 
0 1( )v B  is neglected by 

assuming that the acoustic wave propagates along a crystal 

direction that produces a purely longitudinal electric field. 

The interaction between the pump wave and the 

electrostrictively generated acoustic wave produces a 

perturbation in the electron density, which subsequently drives 

an electron plasma wave and induces a current density in the 

Brillouin-active medium. In a doped semiconductor, this 

density perturbation can be calculated using the approach 

outlined by Pravesh et al. [18]. By differentiating Equation (3) 

and applying Equations (1) and (6), we obtain: 
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The Doppler shift is neglected under the assumption that 

ω0 >> ν >> k0v0. 

Following the approach of Pravesh et al. [18], the 

perturbed electron density n1 in the medium can be 

decomposed into two components: a fast and a slow 

component. The fast component n1f corresponds to the first-

order Stokes component of the scattered light and varies as 

[i(k1x − ω1t)], while the slow component n1s is associated with 

the acoustic wave and varies as exp [i(kax − ωat)]. 

The SBS process can also be described as the annihilation 

of a pump photon accompanied by the simultaneous creation of 

a scattered photon and an induced phonon. Accordingly, the 

stimulated Brillouin process must satisfy the phase-matching 

conditions 0 1 a      and 0 1 ak k k  , which 

correspond to energy and momentum conservation and 

determine the frequency shift and propagation direction of the 

scattered light. Assuming a long interaction path for the waves, 

only the resonant Stokes component 

1 0 1 0( , )a ak k k      is considered, while off-resonant 

higher-order components are neglected [19]. Furthermore, for a 

spatially uniform pump, 1 0 a ak k k k     is assumed to be 

zero under the dipole approximation. 

Applying the rotating wave approximation (RWA) to 

Equation (7), we obtain the following set of coupled equations: 
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From the above equations, it is evident that the generated 

acoustic wave and the Stokes mode are coupled through the 

pump electric field in an electrostrictive medium. Therefore, 

the presence of the pump field is fundamentally essential for 

the occurrence of SBS. 

The slow component n1s can be derived from Equations 

(4) and (8) as: 
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It is clear from the above expression that n1s is strongly 

dependent on the pump intensity. The resulting density 

perturbation, in turn, influences the propagation characteristics 

of the generated waves. 

The Stokes component 1 1( , )k  of the induced current 

density can be determined using the standard relation: 

 
*

1 1 0 1 0 1( ) x x sJ n ev ev n   .                                               (10) 

 

The above analysis, under the rotating wave 

approximation (RWA), gives: 
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In the above expression, the first term corresponds to the 

linear component of the induced current density, while the 

second term represents the nonlinear coupling among the three 

interacting waves through the total nonlinear current density, 

which includes the contribution from carrier diffusion. 

The induced polarization can be expressed as the time 

integral of the induced current density. Consequently, the 

polarization Pcd (ω1) can be obtained from Equation (11) as: 
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The SBS process originates from the component of Pcd 

(ω1) that depends on |E0|2 E1. 

Therefore, the threshold pump amplitude for the onset of 

SBS can be determined by setting Pcd (ω1) = 0 in Equation 

(12), giving: 
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Consequently, at pump power levels well above the 

threshold field E0th, the interaction between the pump and the 

centrosymmetric crystal is predominantly governed by the SBS 

phenomenon. 

By employing the standard relation between the induced 

polarization Pcd (ω1) at frequency ω1 and the Brillouin 

susceptibility (χB)cd, one can write: 
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Equation (14) indicates that the Brillouin susceptibility 

depends on material parameters, including the equilibrium 

carrier density and the diffusion coefficient. It is also evident 

that (χB)cd is influenced by the magnitude of the externally 

applied magnetic field 
sB  via the cyclotron frequency ωc. 

In addition to the Brillouin susceptibility, the system also 

exhibits electrostrictive (ES) polarization, which is generated 

through the interaction between the pump wave and the 

acoustic wave produced within the medium. The scattering of 

the pump wave by acoustic phonons provides an effective way 

to manipulate the frequency, intensity, and propagation 

direction of the scattered light. This capability enables 

numerous applications in areas such as information 

transmission, display technologies, and signal processing. The 

ES polarization can be derived from equation (5) as follows: 
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From equation (15), the Brillouin susceptibility arising 

from the electrostrictive (ES) polarization can be determined 

as: 
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By combining equations (14) and (16), the effective 

Brillouin susceptibility can be determined using the following 

relation: 
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Simplifying equation (18) gives the imaginary component 

of the Brillouin susceptibility as: 
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                                                                                       (19) 

To examine the effective Brillouin gain constant, we 

employ the relation provided in reference [20]: 
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By substituting the imaginary part of the effective 

Brillouin susceptibility from equation (19) into equation (20), 

we arrive at 
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Equation (21) allows for calculating the amplification of 

the Brillouin scattered mode in centrosymmetric diffusive 

crystals. 

When the sample length exceeds the pump wavelength by 

10 to 102 times, following Simoda [21], the expression for the 

effective induced polarization (Pnl)eff [= Pcd + Pes], originally 

derived for an infinite medium, can be conveniently used to 

determine the transmited electric field amplitude ET in a crystal 

of length L. 

 

1
1( ) ( )T nl eff

ik L
E P


 


,                                                (22) 

 

which can alternatively be expressed as 
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The above equation can be used to calculate the 

transmitted intensity IT as 
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3.  Results and discussion 
 

An analysis of equation (13) reveals that both the external 

magnetic field and the wave number significantly affect the 

threshold field E0th needed to initiate effective Brillouin 

scattering in the crystal. Specifically, E0th decreases as ωc and 

k1 increase. Additionally, considering the relevant factor 
2 2 2 1/ 2

1 1( )p k D      , it can be inferred that the threshold 

field for the stimulated process rises with an increase in carrier 

density and a decrease in the diffusion coefficient. 

A closer examination of equation (18) indicates that the 

effective Brillouin susceptibility is highly sensitive to the 

carrier concentration through the plasma frequency ωp, the 

external magnetic field via the cyclotron frequency ωc, and the 

diffusion coefficient through the factor A. For a carrier density 

of 1024 m−3, the cubic Brillouin susceptibility arising solely 

from the diffusion current is approximately 8.5×10−19 esu. At 

lower carrier concentrations, this value decreases by roughly 

five orders of magnitude, rendering it potentially unsuitable for 

the development of cubic nonlinear devices. Furthermore, the 

third-order susceptibility due to the total current density 

(including both conduction and diffusion contributions) shows 

reasonable agreement with both experimental observations and 

previously reported theoretical values [22] calculated using 

only the conduction current. 

A comprehensive numerical analysis of the Brillouin gain 

and transmitted intensity is also carried out for an 

electrostrictive, doped III-V semiconductor crystal at 77 K. The 

crystal is assumed to be illuminated by a 10.6 μm, nanosecond 

CO2 laser. The material parameters used in the analysis are as 

follows: m = 0.015m0 (m0 being the free electron mass), ρ = 

5.8×103 kg m−3, ν = 3×1011 s−1, ω0 = 1.78×1014 s−1, ωa = 1012 

s−1, Γa = 2×1010 s−1, η = 3.9 and va = 4.8×103 m s−1. 

 

E0 ×10  Vm )
7 -1

 (

2 3 4 5 6 7 8 9 101

g
ef

f 
×

1
0

S
I 

u
n

it
s)

-3
(

 6

7

8

5

4

3

2

1

0

9

10

11

12

 
 

Figure 1: Dependence of Brillouin gain on the pump electric field. 
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Figure 2: Brillouin gain as a function of the ratio ωc/ω0 . 
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Figure 3: Brillouin gain as a function of the ratio ωp/ω0 . 
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Figure 4: Transmitted intensity of the Brillouin scattered mode versus 

input pump intensity. 

 

We now turn our attention to the physical parameters 

influencing the Brillouin gain. It is observed that the Brillouin 

gain increases with the input pump amplitude, as illustrated in 

Figure 1. This indicates that higher pump intensity results in 

greater gain. Figure 2 depicts the variation of the gain constant 

with the magnetic field, expressed in terms of ωc/ω0. A notable 

feature in this figure is that a finite gain is obtained only when 

ωc is close to ω0, a property that can be exploited in the design 

of magnetic switches. The gain rises with the magnetic field 

for ωc < ω0, reaching a maximum around ωc ≈ ω0, and then 

decreases sharply when ωc > ω0. This behavior arises because 

the gain coefficient is proportional to the factor 
2 2 2

0( )c

   in 

equation (21), and magnetic absorption becomes significant 

when ωc > ω0, thereby reducing the gain. 
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Figure 5: Transmitted intensity as a function of the ratio ωc/ω0 . 
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Figure 6: Dependence of transmitted intensity on the plasma 

frequency ratio ωp/ω0. 

 

The dependence of Brillouin gain on carrier density (ne) 

via the plasma frequency ωp is shown in Figure 3, indicating a 

rapid increase in gain with increasing carrier concentration. 

Figures 4–6 illustrate the transmitted intensity (IT) of the 

Brillouin scattered mode under varying input parameters, 

assuming a crystal length 100 times the pump wavelength. 

Figure 4 shows that IT rises sharply with increasing input pump 

intensity (Iin), suggesting that using a higher pump intensity 

enhances transmitted intensity, provided the crystal's damage 

threshold is not exceeded. 

The dependence of transmitted intensity on the magnetic 

field, expressed as the ratio ωc/ω0 (Figure 5), mirrors the 

behavior of Brillouin gain shown in Figure 2. Figure 6 

demonstrates that IT initially increases with doping level, 

reaching a maximum at ωp ≈ 0.7 ω0. Further increases in 
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doping beyond this point (ωp > 0.7ω0) lead to a sharp reduction 

in gain until ωp ≈ 1.5ω0, after which the gain slightly recovers. 

This trend is associated with the factor enclosed in square 

brackets in equation (21). Therefore, careful adjustment of 

doping levels allows optimization of Brillouin gain in 

magnetized diffusive semiconductors. Maximum gain is 

achieved in moderately doped samples, highlighting the 

favorable roles of carrier diffusion and magnetic field in 

enhancing Brillouin scattering. 

The significant differences observed between experimental 

and theoretical results in solids can be attributed to factors such 

as the finite size of semiconductor plasmas, the limited drift 

velocities achievable in semiconductors, and the pronounced 

attenuation caused by scattering and Landau damping. 

Applying a magnetic field perpendicular to the wave 

propagation direction helps to reduce the effects of Landau 

damping. The discussion above indicates that substantial 

Brillouin gain and transmitted intensity can be readily obtained 

in moderately doped, magnetized semiconductor plasmas. This 

study thus presents a model well-suited for finite laboratory 

semiconductor plasmas, and experimental investigations based 

on this framework could offer new avenues for the 

development of efficient Brillouin cells, as well as for the 

characterization and diagnostic analysis of electrostrictive 

diffusive semiconductors. 
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