
RP Current Trends in Engineering and Technology 
Vol. 2, No. 4 (October – December 2023) pp. 124–132 
e-ISSN: 2583-5491 
 

 

Cite this article: Ajit Singh, Influence of carrier heating on frequency modulational interactions in transversely magnetized 
diffusive semiconductors, RP Cur. Tr. Eng. Tech. 2 (2023) 124–132. 
 

Original Research Article 

 

Copyright: © 2023 by the authors. Licensee Research Plateau Publishers, India 
This article is an open access article distributed under the terms and conditions of the  
Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 

 

Influence of carrier heating on frequency modulational interactions in 
transversely magnetized diffusive semiconductors 
 
Ajit Singh* 
Assistant Professor, Department of Physics, Government College, Kalka – 133302 (Panchkula) Haryana, India 
*Corresponding author, E-mail: ajitnehra2010@gmail.com 
 

ARTICLE HISTORY 
Received: 15 July 2023 
Revised: 08 Nov. 2023 
Accepted: 12 Nov. 2023 
Published online: 16 Nov. 
2023 
 

KEYWORDS 
Modulational instability; 
Magnetized semiconductor; 
Nonlinear susceptibility; 
Coupled-mode theory. 

ABSTRACT 
The present study focuses on the investigation of modulational amplification in transversely 
magnetized diffusive semiconductors. Recognizing that modulational interactions originate from the 
third-order optical susceptibility χ(3), which arises due to the nonlinear diffusion current density, we 
employ coupled mode theory to analytically examine the frequency modulational interactions between 
co-propagating laser beams and the internally generated acoustic mode. Both steady-state and 
transient amplification characteristics of the modulated waves in transversely magnetized 
semiconductor plasmas are analyzed. Additionally, the influence of carrier heating is considered, which 
introduces new aspects to the study. The heating effect lowers the threshold amplitude required for 
wave excitation and enhances the steady-state as well as transient gain of the generated acoustic mode. 

 
1.  Introduction 

The propagation of optical radiation in an active crystal 

under the influence of an applied electromagnetic field or an 

acoustic strain field has been a prominent topic in the study of 

optical modulation by sound waves. The notion of transverse 

modulational instability arises from a space-time analogy, 

where diffraction takes the role of dispersion [1]. A classical 

example is the instability of a plane wave in a self-focusing 

Kerr medium [2], which illustrates transverse modulational 
instability. Electro-optic (EO) and acousto-optic (AO) effects 

provide practical and widely employed methods for controlling 

the intensity and phase of propagating light [3,4]. Such 

modulation techniques are increasingly applied in diverse 

areas, including imprinting information onto optical pulses, 

mode-locking, and optical beam steering [5–10]. 

Theoretical studies on modulation phenomena have been 

carried out by several researchers [11,12] due to their 

significant technological potential. A key area in nonlinear 

acoustics involves the amplification, attenuation, and 

frequency mixing of waves in semiconductors—particularly 
III-V semiconductors [13–15]—because of their direct 

relevance to optical communication systems. The significance 

of semiconductor crystals stems largely from the availability of 

free-carrier states and the photo-generation of carriers. Given 

the critical role of semiconductors in modern optoelectronic 

technologies, analytical investigations of fundamental 

nonlinear processes in these crystals are highly valuable. Such 

studies are especially important in electrostrictive media, 

where considerations of energy gain or loss play a central role. 

Numerous studies have investigated modulational 

interactions [16–20]. Lashmore-Davies [16] proposed a 

mechanism for the spontaneous breakdown of shear Alfvén 
waves above a certain threshold and demonstrated that this 

approach can be effectively extended to study modulational 

interactions of other finite-amplitude waves in plasmas. 

Anderson et al. [18] reported that the instability growth rate in 

LiNbO3 is sufficiently large to allow experimental observation 

of amplitude modulation and envelope solitons. Singh and 

collaborators [19, 20] highlighted that both frequency and 

amplitude modulation can produce unusually high growth rates 

in materials with relatively high dielectric constants. 
In many studies of nonlinear optical interactions, nonlocal 

effects—such as the diffusion of excited carrier density, which 

contribute to changes in the nonlinear refractive index—are 

often neglected. However, it has been observed that increased 

diffusion can hinder light transmission and disrupt the local 

equilibrium of the equivalent potential representing stable or 

unstable TE nonlinear surface waves [21]. High-mobility 

charge carriers make diffusion effects particularly significant 

in semiconductor technology, as these carriers can travel 

substantial distances before recombining. Consequently, 

incorporating carrier diffusion into theoretical analyses of 
nonlinear wave–wave interactions is important both 

fundamentally and for practical applications, drawing 

considerable attention from researchers over the past decades 

[21–24]. Studies on reflectance at interfaces between linear and 

nonlinear diffusive media have further stimulated work in this 

area [21, 23]. Diffusion is expected to influence the third-order 

optical susceptibility χ(3), thereby significantly affecting the 

dispersion and transmission of incident radiation in the 

medium [23]. 

Furthermore, when an intense pump beam passes through 

the medium, it causes notable heating of the carriers, elevating 

their steady-state temperature above that of the lattice. This 
carrier heating substantially alters the electron momentum 
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transfer collision frequency (MTCF), which in turn affects 

carrier mobility, diffusion, and the medium’s conductivity, 
resulting in refined modifications to the optical response. 

In view of the above, we present an analytical study of the 

modulational instability of an intense electromagnetic beam 

propagating through a diffusive semiconductor plasma, taking 

into account excess charge carriers and carrier heating induced 

by the pump. The inclusion of diffusion-induced current 

density and the effects of hot carriers introduces new aspects to 

the analysis, particularly in n-type semiconductors [25]. The 

intense pump beam excites an acoustic wave within the 

semiconductor, which facilitates interactions between free 

carriers via electron plasma waves and between acoustic 
phonons through lattice vibrations. This interaction generates a 

substantial space-charge field that modulates the pump beam. 

Consequently, both the optical and acoustic waves in an 

acousto-optic modulator can experience strong amplification 

through nonlinear optical pumping. The pronounced 

amplification arises from an acoustic gain mechanism that 

counterbalances the usual attenuation of sound waves 

propagating in the acousto-optic medium [26]. 

The present analysis employs coupled mode theory 

[27,28] to investigate modulational instability arising from a 

parametric four-wave mixing process, while accounting for 

carrier heating induced by the pump. Initially, the crystal 
temperature is assumed to be at liquid nitrogen temperature 

(77 K), so that energy and momentum transfer of carriers 

occurs primarily through collisions with polar-optical phonons 

(POP) and acoustic phonons (AP), respectively [29–31]. The 

acousto-optic field interacts with the modulated signal in the 

presence of strain and amplifies it under suitable phase-

matching conditions. This parametric process is characterized 

by an effective third-order optical susceptibility generated by 

the diffusion current density in the centrosymmetric 

semiconductor plasma. Unlike the electro-optic Kerr effect, 

where nonlinearity arises from the local interaction of the 
optical field with bound electrons, here the nonlinearity is 

entirely due to the diffusion of free carriers, which can be 

described as a diffusive Kerr effect. To the best of our 

knowledge, no prior work has determined the steady-state and 

transient gain coefficients of modulated waves in magnetized 

diffusive semiconductor plasmas while incorporating the 

effects of carrier heating. 

 

2.  Theoretical formulation 

To investigate modulational interactions in n-type 

diffusive semiconductor plasmas arising from the third-order 

susceptibility 
(3)

d , we consider the well-established 

hydrodynamic model of a homogeneous semiconductor 

medium of infinite extent. The analysis assumes a spatially 

uniform pump electric field (|k0| ≈ 0) 

 

0 0 0
ˆ exp( )E xE i t  .                                                         (1) 

 

The pump field is applied to an acousto-optic crystal, co-

propagating with the parametrically generated acoustic wave 

within the medium, which is subjected to a transverse DC 

magnetic field 0 0
ˆB zB . Under the dipole approximation, the 

incident pump beam is assumed to be spatially uniform, since 

the wavelength of the excited wave is much smaller than the 

characteristic scale of pump field variation [32] (i.e., k0 << k, 

so k0 can be neglected). Due to the photoelastic response of the 

medium, the generated acoustic grating produces a 

corresponding variation in the refractive index. The incident 

optical field is diffracted by this grating, generating an 

additional optical field within the medium. Depending on the 

orientation of the incident wave, the diffracted beam may be 

either up-shifted (anti-Stokes mode) or down-shifted (Stokes 

mode). In the presence of strain, the Stokes and anti-Stokes 

modes can couple over a long interaction path. This coupled 

wave propagates as a solitary wave in the nondispersive regime 

of the acoustic wave and can be amplified under suitable 

phase-matching conditions. 

The hydrodynamic model of plasma is employed for the n-

type diffusive semiconductor medium at a crystal temperature 
of 77 K (liquid nitrogen temperature), allowing the 

replacement of streaming electrons by an electron fluid 

characterized by a few macroscopic parameters, such as 

average velocity and carrier density. This simplification 

facilitates the analysis without significant loss of information. 

However, it confines the validity of the model to the regime 

where kal << 1, with ka  being the acoustic wave number and l 

the carrier mean free path. 

We now consider the following basic equations describing 

modulational interactions in a one-dimensional configuration 

along the x-axis: 
 

0
0 0 0 0[ ( ) ]x eff

v e e
v E v B E

t m m


       


                    (2) 
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  
        
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2
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0
n n v n

v n D
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   
   

   
.                                  (4) 

 

in which 

 

0 0 0( )eff xE E v B                                                          (5) 

 

and diffusion coefficient 

 

Bk T
D

e
  .                                                                      (6) 

 

The subscripts 0 and 1 refer to quantities associated with 

the pump and signal modes, respectively. Equations (2) and (3) 

represent the momentum transfer equations for the pump and 

generated waves, where v0 and v1 denote the oscillatory fluid 

velocities under the influence of their respective fields. Here, ν 

and m are the phenomenological momentum transfer collision 

frequency and the effective electron mass, respectively. 

Equation (4) corresponds to the continuity equation, with n0 

and n1 representing the equilibrium and perturbed carrier 

concentrations. In equation (6), μ (= e/mν) is the electron 

mobility, kB is Boltzmann’s constant, and T is the electron 

temperature in Kelvin. The primary nonlinearity in the motion 

of charge carriers arises from the convective derivative ( . )v v  

and the Lorentz force ( )e v B , both of which depend on the 

total intensity of the incident illumination 0,1E . 

In the multimode theory of modulational interactions, the 

pump beam induces acoustic perturbations through lattice 

vibrations at the phonon mode frequencies within the 
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semiconductor medium. These lattice vibrations produce 

electron-density perturbations that nonlinearly couple with the 

pump wave, driving acoustic waves at the modulated 

frequencies. The equation of motion for the acoustic wave in a 

centrosymmetric medium is expressed as follows: 

 
2 2

*

12 2

1
2 ( . )

2
eff

u C u u
E E

t xt x

   
    
    

.                        (7) 

 

Here, u denotes the lattice displacement induced by the 

interfering electromagnetic fields, represented by the 
generalized force on the right-hand side of equation (7). The 

parameters ρ, C, η, γ, and ε correspond to the crystal’s mass 

density, elastic constant, linear refractive index, damping 

constant, and permittivity, respectively. The generated acoustic 

field is assumed to vary as a plane wave of the form exp[i(kax 

− ωat)]. 

The diffusion of charge carriers causes charge separation, 

resulting in the formation of a strong space-charge field. This 

field can be determined from the continuity equation (Eq. (4)) 

together with Poisson’s equation, which accounts for the 

superposition of Coulomb fields generated by the excess 

charge density n1 and the equilibrium carrier density n0, as 
follows: 

 
2 2 *

1 1

2

1

( 1)
eff

E n e u
E

x x

   
  

   
.                                      (8) 

 

When an intense pump beam propagates through a high-

mobility semiconductor, the electrons interact strongly with the 

field and gain energy due to their low effective mass, while the 

ions remain largely unaffected because of their much larger 

inertia. Consequently, the electrons reach a temperature Te 

slightly higher than the lattice temperature T0. In the steady 

state, the electron temperature Te can be determined from the 
energy balance equation as follows: 

The power absorbed by each electron from the pump 

electric field can be derived from equation (2) as follows: 

 
2 2 2

* *0 0
0 0 0 02 2 2 2 2

0 0 0

( )
Re( . )

2 2 [( ) 4 ]

c

c

ee
v E E E

m

  


    
.              (9) 

 

Here, * indicates the complex conjugate of the quantity, 

and Re denotes the real part. 

According to Conwell [33], the power dissipated per 

electron due to collisions with polar-optical phonons (POP) can 

be expressed as follows: 

 
1/ 2

1/ 2

0

2
exp

2 2

e eB D
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x xk
P eE x K

m

     
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                                       0

0
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ex x

x

 



.            (10) 

 

Here, 0, 0,( / )e l B ex k T  , in which l  represents the 

energy of the polar-optical phonons (POP) given by 

l B Dk   , and θD is the Debye temperature of the medium. 

The quantity 
2 1 1( / )( )po l LE me  

     denotes the POP 

scattering potential, where εL and ε∞ are the static and high-

frequency dielectric permittivities of the medium, respectively. 

Additionally, 0 ( / 2)eK x  is the zeroth-order Bessel function of 

the first kind. 

In the steady state, the power absorbed per electron from 

the pump electric field equals the power dissipated per electron 

due to collisions with POP scattering. Hence, using equations 

(9) and (10) and assuming ν << ω0, ωc and Te ≈ T0 (i.e., 

moderate electron heating by the pump field), we obtain: 

 
2 2 2

*0 0
0 02 2 2 2 2
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1
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e c
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T e
E E
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where 
 

1/ 2 1/ 2
1 0 0 0

0 0

0

exp( / 2)2

2 exp( ) 1
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po

x x xk
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m x
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. 

 

The electron momentum transfer collision frequency 

(MTCF), modified to account for acoustic phonon scattering, is 

given by [33]: 

 

0

0

eT

T

 
    

 
.                                                                  (12) 

 

Here, ν0 denotes the electron momentum transfer collision 

frequency (MTCF) in the absence of the pump electric field. 

In the modulational instability process, a perturbation in 

the carrier density is generated in the medium under the 

influence of a strong pump beam. This perturbation is 
associated with the phonon mode and varies at the acoustic 

frequency. The equation describing the density fluctuation of 

the coupled electron–plasma wave in an n-type magnetized 

diffusive semiconductor can be derived from equations (1)–(8) 

using linearized perturbation theory, as follows: 

 
22 2

2 2 *01 1 1 1
12 2

1

( 1)a
R eff

n ekn n n n
n D E u E

t m xt x
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        

   

                                                                                               (13) 

 

In Eq. (13),  

 
2

2 2 2

1 2 2

B
R p

c

k T
k

m

    
       

     
  

 

is the electron–plasma frequency modified by the 

cyclotron frequency 0( / )c eB m   of the carriers, and 
2 1/ 2

0( / )p n e m    is the unmodified electron–plasma 

frequency and ( / ) effE e m E . 

The pump beam is phase-modulated by the density 

perturbation, generating forced disturbances at the upper (ωa + 

ω0) and lower (ωa − ω0) sideband frequencies. For this 

modulation process, the phase-matching conditions i.e. 

0ak k k    and 0a    must be satisfied, under 

spatially uniform laser irradiation, such that 0 0k   (for 

instance). Higher-order frequency components are neglected 

by assuming a long interaction path, effectively treating the 

crystal as infinite. The resulting density modulation, oscillating 

at the upper (ωa + ω0) and lower (ωa − ω0) sideband 



RP Current Trends in Engineering and Technology 
 

 

Page | 127  

 

frequencies, can then be expressed, after simplification, as 

follows: 

 
23 2

0 0 1

1 2 2 2

( 1)
( , )

2 ( 2 )

a eff

a a a a

i n ek A E E
n k

k v i
 

   
 

    
.                    (14) 

 

Here 2 2 2 1[ ]RA Dk i ik E 

          . 

 

The density perturbations oscillating at the forced 

frequencies in equation (14) are derived under the quasi-static 

approximation, while the Doppler shift is neglected based on 

the assumption that 0 0 0.k v    . Additionally, the 

contribution of the transition dipole moment is omitted in the 

analysis of modulational instability, allowing the study to focus 

exclusively on the effects of nonlinear current density arising 

from carrier diffusion. 
The diffusion-induced nonlinear current densities 

corresponding to the upper and lower sidebands can be 

expressed as follows: 

 

1(( , )
( , )d

n k
J k eD

x

 
 

 
  


                                    (15a) 

 

1(( , )
( , )d

n k
J k eD

x

 
 

 
  


.                                   (15b) 

 

In a centrosymmetric system, the four-wave parametric 

interaction involving the incident pump, the upper and lower 

sideband signals, and the induced acousto-optic idler wave—

characterized by the cubic nonlinear susceptibility tensor—

leads to modulational instability of the pump. Consequently, 

the induced cubic nonlinear optical polarization at the 
modulated frequencies, Pd (ω±, k±), can be expressed as the 

time integral of the corresponding nonlinear current density Jd 

(ω±, k±), giving: 

 

( , ) ( , )d dP k J k dt      .                                         (16) 

 

The effective diffusion-induced polarization, arising from 

contributions of both the upper and lower sidebands, can be 

expressed as follows: 

 

( , ) ( , ) ( , )d d dP k P k P k          .                            (17) 

 

Therefore, using equations (15)–(17) and performing 

algebraic simplification, the total effective third-order 

polarization can be expressed as: 

 
22 2 4 2 2

0 0 0 1 0 1

2 2 2 2 2 2

0
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d
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n De k Z E E
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Here, 
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and 
2

0
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R

Dk
    


,  

where the transverse components of the oscillatory 

electron fluid velocity v0 in the presence of the pump and the 
magnetostatic field are determined from equation (2) as 

follows: 
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i
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 ; 0
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0( )

c
y

c

e E
v

m



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.                             (19) 

 

The induced polarization arising from cubic nonlinearities 

at the modulated frequencies (ω±, k±) is defined as: 

 
2(3)

0 0 1( , )d dP k E E     .                                           (20) 

 

Consequently, the effective nonlinear susceptibility of the 

medium, arising from carrier diffusion in the four-wave 

parametric process, can be determined using equations (18) 
and (20) as follows: 

 
2 2 4 2 2

(3) 0 0 1
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0

( 1)
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d

a a a a c
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m k v i

   
 

      
.                      (21) 

 

The effective nonlinear susceptibility given in equation 

(21) can be referred to as the diffusion-induced third-order 

susceptibility of the crystal. It characterizes the steady-state 

optical response of the medium and governs the nonlinear 

propagation of waves due to carrier diffusion in the presence of 

a transverse magnetostatic field. Accordingly, this process may 

be described as diffusion-induced modulational interaction. For 

a nondispersive acoustic mode, the real and imaginary parts of 
the effective nonlinear susceptibility can be readily obtained by 

rationalizing equation (21) as follows: 
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m

   
 

   
                            (22a) 
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Here 

1
2

22 2 2 2
2 2

2 2 2

0 0

4k E k E
Z


  

          
   

 . 

 

Equations (22) can be used to determine the steady-state 

gain via 
(3)[ ]d i  as well as the dispersive characteristics via 

(3)[ ]d r  of the modulated waves. From equation (22a), it is 

evident that the refractive index depends on the intensity, 

allowing for the possibility of focusing or defocusing of the 

propagating beam. Equation (22a) also indicates the negative 

dispersive nature of the dissipative medium at 
2

0 0[ ( / )]R Dk     . When 
(3)[ ]d r  becomes negative, 

enhanced self-focusing of the modulated signal can be 

expected under normal dispersion. In this formulation, the 

inclusion of a magnetostatic field and hot carrier effects 

introduces new dimensions to the interaction process. 

However, the strength of the magnetostatic field cannot be 

increased indefinitely, as cyclotron absorption may dominate 

the instability at higher field values. 
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To investigate the potential for diffusion-induced 

modulational amplification in a centrosymmetric semi-

conductor, we use the following relation: 

 

2(3)

0

1

[ ]
2

ac d i

k
E   


.                                                 (23) 

 

Here, αac represents the nonlinear absorption coefficient. 

Steady-state nonlinear growth of the modulated signal occurs 

only if αac, as determined from equation (23), is positive. 

Therefore, using equations (22b) and (23), it follows that 
(3)[ ]d i  must be negative to achieve growth of the modulated 

signal. Accordingly, the condition for obtaining a positive 

growth rate can be expressed as: 

 
22 2 2 2

0 ( )k E     .                                                    (24) 

 

From the above discussion, it is clear that the presence of 

particle diffusion is essential to induce modulational instability. 

Additionally, the applied pump intensity must exceed the 

threshold specified by equation (24). The threshold pump 

amplitude required to initiate modulational amplification is 

given by: 

 
2 2

2 2 1/ 20

0

( )
( )c

th

m
E

ek

 
   


.                                       (25) 

 
Equation (25) shows that the transverse modulational 

instability of the signal wave possesses a finite intensity 

threshold, even without collisional damping. The threshold 

field Eth exhibits complex behavior and is highly sensitive to 

the externally applied magnetic field. 

A detailed analysis of the steady-state gain factor indicates 

that significant amplification of the modulated signal (gs = αac) 

is achievable only when the acoustic mode is nondispersive, 

i.e., as ωa → kava. The formulation also shows that the presence 

of a magnetostatic field enhances the growth rate of the 

modulated signal. The growth rate is found to be independent 

of the signal frequency and depends instead on the pump and 
acoustic wave frequencies, which aligns with experimental 

observations [34]. Additionally, the growth rate is influenced 

by the carrier concentration n0. Therefore, the steady-state gain 

coefficient of the modulated wave can be obtained from 

equations (22b) and (23) as: 
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      
 

.   (26) 

 

Using equation (26), the steady-state gain of the 

modulated wave in an n-type InSb crystal (with material 

parameters provided in Section 3) can be expressed as: 

 
gs = 2.758×10−3Iin (with carrier heating)                      (27a) 

 

gs = 1.668×10−3Iin (without carrier heating).                (27b) 

 

Here, we define 
2

0 0 00.5inI c E  , where c0 is the speed 

of light in vacuum. Equations (27) indicate that a high-power 

pulsed laser is required to achieve a significant gain coefficient 

for the modulated wave. However, at such high pump powers, 

transient effects cannot be neglected. Incorporating these 

transient effects allows us to predict the threshold pump 

intensity (Ith) necessary to initiate the modulation process, as 

well as the optimum pulse duration for the occurrence of 

modulational instability. In general, the transient gain 

coefficient gT can be calculated using the relation [35]: 

 
1/ 2(2 )T s p pg g x   .                                              (28) 

 

Here, Γ is the optical phonon lifetime, x is the interaction 

length, and τp is the pulse duration. For very short pulses (τp ≤ 

10−10 s), the interaction length should be replaced by c1τp/2, 

where c1 = c0/εL is the speed of light in the crystal, and εL is the 

lattice dielectric constant of the material. By setting gT = 0 in 

equation (28), the threshold pump intensity can be obtained as: 

 

/th s inI g I .                                                                   (29) 

 

Here, G = gs/Iin represents the steady-state gain per unit 

pump intensity. 

Numerical analysis was performed using Γ = 4×108 s−1 for 

the n-type InSb crystal, which gives the threshold pump 

intensity for the onset of modulational instability as 1.012×103 

Wm−2 when carrier heating effects are included, and 1.674×103 
Wm−2 when these effects are neglected. 

However, for pulse durations τp ≥ 10−9 s, the cell length 

can be taken as x. Under these conditions, we obtain: 

 
1/ 2 1/ 2 1/ 2( ) [ ( ) ( ) ]T p p sg g x     .                              (30) 

 

Using the above expression, one can estimate the optimum 

pulse duration (τp)opt beyond which no gain is obtained. By 

setting gT = 0, this condition yields: 

 

( ) s
p opt

g x
 


.                                                                (31) 

 

For n-type InSb, using the previously calculated values of 

gs and taking x = 10−6 m, we obtain: 

 

(τp)opt = (6.894×10−18)Iin s (with carrier heating)          (32a) 

 

(τp)opt = (4.171×10−18)Iin s (without carrier heating).   (32b) 

 
These values of (τp)opt not only explain the reduction of 

gain for the modulated wave at longer pulse durations but also 

indicate that the optimum pulse duration can be increased by 

raising the pump intensity. 

 

3.  Results and discussion 
The diffusion-induced modulational amplification of co-

propagating waves in a diffusive medium arises from the 

interplay between linear dispersion effects and nonlinear 

processes. The amplification of the modulated electromagnetic 

wave strongly depends on the coupling between the electron–
plasma wave and the generated acoustic wave. Consequently, 

the amplification can be controlled by the carrier density of the 

medium, which determines the effective plasma frequency 

under an intense pump beam, as well as by the diffusion of 

charge carriers. Amplification is enhanced in the presence of a 
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strong electron–plasma wave, which strengthens the coupling 

between the interacting waves. Maximum amplification of the 
modulated wave occurs when the sideband signals are most 

efficiently coupled. Therefore, any mechanism that reduces 

phase mismatch will enhance the modulational amplification. 

In this context, the presence of a strong acoustic wave acting as 

an “idler” provides an effective means to minimize phase 

mismatch between the interacting waves. 

An externally applied acoustic wave can be introduced 

into the system to further enhance the modulational 

amplification process by strengthening the induced grating. 

This external acoustic wave adds coherently to the internally 

generated acoustic wave, particularly in the case of a Bragg-
diffracted Stokes sideband signal. However, the presence of 

this additional acoustic wave alters the Stokes–anti-Stokes 

coupling parameter, and the corresponding space-charge field 

must be adjusted accordingly within the theoretical framework. 

We now present a detailed numerical analysis of the 

effects of carrier heating on the threshold and modulational 

amplification characteristics arising from the transfer of 

modulation from the pump wave to the modulated wave. The 

analytical results are applied to a centrosymmetric n-type III–V 

semiconductor at 77 K, irradiated by a nanosecond-pulsed 

10.6 μm CO2 laser. The following set of material and 

experimental parameters has been used in the analysis: 
m = 0.014m0, m0 being the free electron mass, εL = 17.54, 

ε∞ = 15.7, γ = 2×1010 s−1, η = 3.9, ρ = 5.8×103 kgm−3, T0 = 77K, 

θD = 278 K, ν0 = 3.5×1011 s−1, va = 4×103 ms−1, ωa = 1012 s−1, 

ω0 = 1.78×1014 s−1. 

Figure 1 illustrates the heating of carriers by the pump 

field (Eq. (11)) and the pump energy dependence of the 

momentum transfer collision frequency (MTCF) (Eq. (12)). 

The curves indicate a clear dependence on the electron pump 

amplitude, highlighting that these effects should not be 

neglected when analyzing the interaction of an intense pump 

with a high-mobility semiconductor. Equation (11) shows that 
the static transverse magnetic field significantly contributes to 

carrier heating only when ωc > ω0.  
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Figure 1: Dependence of the electron-to-lattice temperature ratio 

(Te/T0) and the momentum transfer collision frequency of electrons (ν) 
on the pump amplitude (E0), for n0 = 1024 m-3 and ωc = 0.01ω0. 
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Figure 2: Variation of the threshold pump field (Eth) with the acoustic 

wave number (ka) for n0 = 1024 m-3 and ωc = 0.01ω0. Curve (a) 
includes carrier heating effects, while curve (b) excludes them. 
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Figure 3: Dependence of the threshold pump field (Eth) on the 

cyclotron frequency (ωc) at n0 = 1024 m-3 and ka = 2.5×108 m-1. Curve 
(a) represents results with carrier heating effects, and curve (b) 

without. 
 

However, at such high magnetic fields, cyclotron 
resonance effects become prominent, rendering our model 

invalid. Therefore, within the permissible magnetic field range 

(ωc ≤ ω0), the contribution of the magnetic field to carrier 

heating is considered negligible. 

Figures 2 and 3 present a numerical analysis of the 

external parameters affecting the threshold electric field 

required for the onset of modulational amplification. Curves 

(a) and (b) show the variation of Eth with and without the 

inclusion of carrier heating (CH) effects, respectively. These 

figures demonstrate that the incorporation of carriers heating 
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(CH) effects plays an important role to decide the onset value 

of the threshold electric field amplitude. From the above 

illustrations, it is clear that the behaviour of Eth with ka and ωc 

are identical in both the cases (with and without CH effects). 

The only difference lies in the corresponding magnitudes. It 

can be observed from Figure 2 that for smaller magnitudes of 

ka (such that, Eth decreases with ka as 1

ak  , and at 
2

0 0[ ( ) / ]R aD k     , Eth is found to be minimum in both 

the cases and minimum values of Eth ≈ 1.414×105 Vm−1 is 

obtained at ka = 4.51×108 m−1 with CH and 3.7×104 Vm−1 at ka 

= 5.486×108 m−1 without CH. Further when 
2

0 0[ ( ) / ]R aD k      a then Eth shows a steep increment in 

both the cases. 

Figure 3 illustrates the variation of Eth with the external 

DC magnetic field Bs, expressed in terms of the cyclotron 

frequency ωc. It is observed that the threshold field required to 

initiate modulational amplification is lower at small magnetic 

fields, both with carrier heating (CH, curve (a)) and without 

CH (curve (b)). The threshold field increases as the magnetic 

field approaches 1 T (corresponding to ωc ≈ 1.78×1013 s−1), 

reaching Eth=7.651×106 Vm-1 with CH and Eth = 

8.198×106 Vm-1 without CH. For ωc > 1.78×1013 s−1, a decrease 

in the threshold field is observed at ka = 2.5×108 m−1. These 

maxima can be attributed to the dependence of Eth on the factor 
2 2 1/ 2 2 2

0( ) ( ) ( )c cf        as shown in equation (25). 

Thus, an external transverse DC magnetic field with ωc > 

1.78×1013 s−1 effectively reduces the threshold field, likely due 

to the influence of the effective Hall field induced by the 

applied magnetic field. 

Figure 4 illustrates the variation of the modulated gain 

coefficient gs with the wave number ka, with and without 

carrier heating (CH) effects represented by curves (a) and (b), 

respectively. Carrier heating is seen to enhance the modulated 

growth rate by approximately a factor of 2 in the dispersion-

less regime of the acoustic mode, as shown in the inset.  

 

0

150

300

-150

-300

-450

-600

-750

-900

450

600

750

900

 
(m

)
g

s 

-1

(a)

(b)

ka (×10  m )
8 -1

2 3 4 5 6 7 8 9 101

 
Figure 4: Steady-state gain coefficient (gs) versus acoustic wave 

number (ka) at E0 = 2×107 Vm-1, with n0 = 1024 m-3 and ωc = 0.01ω0. 
Curve (a) includes carrier heating effects; curve (b) does not. 
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Figure 5: Variation of the steady-state gain coefficient (gs) with 

carrier concentration (n0) at E0 = 2×107 Vm-1, ka = 2.5×108 m-1, and ωc 
= 0.01ω0. Curve (a) accounts for carrier heating effects, curve (b) 

excludes them. 
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Figure 6: Transient gain (gT) as a function of pump pulse duration (τp) 

for n0 = 1024 m-3, ka = 2.5×108 m-1, ωc = 0.01ω0, and input intensity Iin 

= 2.071×1012 W/m2. Curve (a) includes carrier heating effects; curve 

(b) does not. 

 

From equation (26), it is evident that for smaller values of 

ka (where ωa >> kava), gs is negative and decreases with 

increasing ka. When ωa ≈ kava, corresponding to a non-

dispersive acoustic mode, gs reaches its maximum values of 

3.808×109 m−1 with CH and 2.299×109 m−1 without CH (as 
seen in the inset). For ωa < kava, gs exhibits a sharp decline with 

further increase in ka in both cases. 

Figure 5 presents the growth rate of the modulated signal 

as a function of carrier density n0 for the nondispersive mode 

of the low-frequency acoustic wave. The results show that the 

gain coefficient of the transversely modulated wave increases 



RP Current Trends in Engineering and Technology 
 

 

Page | 131  

 

with the carrier density, both with and without carrier heating 

(CH) effects. This indicates that higher amplification can be 
achieved by increasing the carrier concentration through n-type 

doping. Incorporating CH is particularly advantageous, as it 

enhances the gain coefficient at higher carrier densities. 

However, the doping level should not exceed the limit at which 

the plasma frequency ωp surpasses the input pump frequency 

ω0, because in the regime where ωp > ω0, the electromagnetic 

pump wave will be reflected by the medium. Therefore, 

moderately to heavily doped semiconductors provide the most 

suitable environment for diffusion-induced modulational 

instability. 

Figure 6 illustrates the transient gain coefficient gT of the 
modulated signal as a function of pulse duration, both with and 

without carrier heating (CH) effects. The cell length is taken as 

10−6 m, and the pulse duration is varied within 10−8 s  ≤ τp ≤ 

10−5 s. The figure shows that carrier heating shifts the peak 

transient gain toward longer pulse durations. The overall 

behavior of gT with respect to τp is similar in both cases. For a 

fixed input intensity Iin, the transient gain initially increases 

with τp, reaching a maximum, and then decreases rapidly for 

longer pulse durations. 

 

4.  Conclusions 
Based on the discussion above, it can be inferred that 

including carrier heating lowers the threshold field needed to 

trigger modulational instability, while simultaneously 

enhancing both the steady-state and transient gain coefficients. 

Among various materials, heavily doped III-V compound 

semiconductors are identified as the most suitable medium for 

diffusion-driven modulational interactions within the 

permissible pump frequency range (ω0 ≥ ωp). These 

semiconductors could be effectively utilized to design acousto-

optic modulators that exploit heating effects in a diffusive 

plasma environment. 
From the above discussion, it may be concluded that 

incorporation of carrier heating reduces the threshold  
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