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ABSTRACT 
A comprehensive analytical study is carried out on the stimulated Brillouin scattering (SBS) of a high-
intensity helicon pump wave traveling parallel to an applied magnetic field within an n-type cubic 
piezoelectric semiconducting plasma of a specific symmetry class. Using a hydrodynamic approach for a 
uniform, piezoelectric, single-component (electron) semiconducting plasma, a general dispersion 
relation is derived. The study examines the threshold values of the pump electric field and the initial 
growth rates of the excited modes, considering both left-hand and right-hand circularly polarized waves 
when the pump exceeds the threshold. Numerical evaluations are performed for n-type indium 
antimonide (n-InSb) at 77 K subjected to a high-power helicon wave. The laser field intensities 
considered range from 107 to 1011 Wm-2, which are assumed to remain below the damage limit of the 
InSb crystal, and the wave amplitudes are within experimentally achievable levels. 
 

 
1.  Introduction 

Driven by the growing interest in stimulated Brillouin 

scattering (SBS), this paper presents the results of an analytical 

study on Brillouin instability in a longitudinally magnetized 

piezoelectric semiconducting plasma exposed to a high-power 

helicon pump wave. The work also explores the conditions 

under which the unstable Brillouin mode can grow within the 

crystal. 

In general, the dielectric constant of a scattering medium 

is influenced by its primary excitations, such as molecular 

vibrations or acoustic and optical phonons, which enable the 

coupling of an incident light wave with these excitations. In a 

semiconducting plasma, a time-dependent electric field induces 

a corresponding electrostrictive strain, which generates an 

acoustic wave in the medium. This interaction between the 

electromagnetic wave and the acoustic wave leads to the 

phenomenon of stimulated Brillouin scattering (SBS). The 

scattered wave can propagate in various directions, but the 

intensity is maximized in the backward direction, accompanied 

by a characteristic frequency shift equal to the acoustic 

frequency [1]. The theoretical foundations of SBS were first 

developed by Kroll [2] and Tang [3], and later reviewed by 

Starunov [4] and Fabelinskii [5]. Singh et al. [6] provided a 

simplified analytical approach to analyze the influence of 

piezoelectricity and magnetic field on stimulated Brillouin 

scattering. Experimentally, Asam et al. [7] observed SBS in 

germanium using a pulsed CO₂ laser, while Winterling [8] and 

colleagues utilized SBS-generated ultrasonic waves in the 

microwave range to study ultrasonic absorption in quartz at 29 

GHz. Sussman and Ridley [9] reported measurements of 

amplified acoustic flux in oxygen-doped n-GaAs crystals using 

a continuous-wave Nd:YAG laser (1.06 µm). More recently, 

Huey et al. [10] demonstrated experimental SBS in 

microwave-plasma interactions. 

A survey of the literature indicates that no studies have yet 

explored the conditions required to achieve amplified acousto-

helicon flux in a solid medium irradiated by a high-power 

helicon pump wave. The nonlinear excitation of acousto-

helicon waves in piezoelectric semiconducting plasmas has 

been a highly active area of research due to its significant 

applications in semiconductor diagnostics and device 

technology [11–14]. Recently, Kumar et al. [15] analyzed the 

influence of piezoelectricity, doping and magnetostatic field on 

Brillouin amplification in compound (AIIIBV and AIIBVI) 

semiconductors. The present study focuses on an analytical 

investigation of stimulated Brillouin scattering (SBS) and the 

resulting instability of acousto-helicon waves in a 

homogeneous, nondegenerate n-type (electron-only) 

piezoelectric semiconductor exposed to a high-power helicon 

pump wave. The model considers a cubic piezoelectric crystal 

of the symmetry class 43m  subjected to a strong longitudinal 

magnetostatic field sB  along the z-axis, parallel to the electric 

field 
0E  of the high-amplitude helicon pump wave 

0 0 0exp[ ( )]E i t k z  . The scattered electromagnetic and 

transverse acoustic waves, denoted by 
1 1( , )k  and ( , )k  

respectively, also propagate along the z-direction. These waves 

satisfy the energy and momentum conservation conditions: 

1 0      and 
1 0k k k  . The analysis employs the 

coupled-mode theory, previously used by Kumar et al. [15] for 

a simplified treatment of SBS. 
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However, the current study has been carried out under the 

following assumptions [16-19]: 
 

(i) The amplitude of the pump electric field is assumed to 

remain below the damage threshold of the crystal under 

consideration. 

(ii) Nonlinear material effects, which are significant in 

strongly piezoelectric materials like LiNbO3, are neglected 

by focusing on moderately piezoelectric semiconductors, 

such as III-V binary compounds. 

(iii) The semiconductor is assumed to have an isotropic and 

nondegenerate conduction band. 

(iv) Band non-parabolicity, which contributes approximately 

3% deviation from a parabolic band structure, is neglected. 

(v) Electron concentrations are taken such that the electron 

plasma frequency is sufficiently large and nearly matches 

the pump frequency. 

(vi) The pump wave vector 0k  is assumed to be approximately 

twice that of the acoustic wave vector 0( 2 )k k k . 
 

Therefore, the present analysis is well-suited for studying 

SBS in n-type heavily doped III-V semiconductors, such as n-

InSb and n-GaAs, when irradiated with a high-power circularly 

polarized electromagnetic wave. In this study, the dispersion 

relation is solved for complex frequencies ( )r ii      with 

real positive values of the wave vector k throughout the 

analysis. A propagating mode is considered unstable and 

growing only when i  is less than zero with i , representing 

the initial growth rate of the unstable mode. Detailed numerical 

evaluations have been carried out to determine conditions for 

the onset of Brillouin instability and the initial growth rates of 

unstable acousto-helicon modes at pump field amplitudes 

significantly above threshold, specifically for n-InSb at 77 K. 

 

2.  Dispersion relation 

We adopt a hydrodynamic model for a homogeneous, 

single-component (electron) piezoelectric semiconducting 

plasma, following the geometrical configuration described in 

Section 1. The time-dependent electric field 
0E  of the pump 

wave induces an electrostrictive strain in the medium, which 

generates an accompanying acoustic wave. This acoustic wave 

modulates the optical dielectric constant, enabling energy 

exchange between the acoustic wave and the electromagnetic 

wave, whose frequency is approximately equal to that of the 

acoustic wave. Consequently, applying the frequency-matching 

condition 1 0     , yields the relation 0 2   . The 

resulting net electrostrictive force per unit volume is given by 

[1]. 

 

21

2
F E  .                                                                   (1) 

 

Here,   denotes the change in the optical dielectric 

constant, which is approximately 10-11 Fm-1. 

We assume that the internally generated acoustic wave is a 

pure shear wave propagating along the z-axis, which 

corresponds to the (001) cubic axis of the crystal. The lattice 

displacement occurs along the x- and y-axes, representing a 

transverse sound wave, corresponding to the (110) and (11ˉ0) 

cubic axes, respectively. The analysis considers a cubic 

piezoelectric III-V binary semiconducting crystal of a specific 

symmetry class. For the propagation of low-frequency acoustic 

vibrations in a piezoelectric crystal, the lattice’s electric and 

elastic properties are coupled; thus, the polarization and 

accompanying electric field must be taken into account. The 

piezoelectric characteristics of the material are described by the 

elements 
ijke  of its piezoelectric tensor [20]. It is well 

established that cubic crystals of class 43m  possess only a 

single independent piezoelectric constant [21], e14. 

Consequently, the lattice equation of motion, including the 

electrostrictive force (as given in (1)) and under the condition 

uz = 0, can be expressed as follows: 
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Here, ρ represents the crystal density, C44 is the relevant 

elastic stiffness constant, and e14 denotes the piezoelectric 

stress constant. The other fundamental equations employed in 

this analysis are as follows: 
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Equations (3) and (4) represent the zero- and first-order 

momentum transfer relations, where 0v  and v  denote the 

oscillatory electron fluid velocities induced by the electric 

fields of the pump and scattered waves, respectively. 

0 0 0 0/B k E    is the oscillatory magnetic field of the 

incident laser radiation. Equation (5) is the continuity equation, 

with n0 and n representing the unperturbed and perturbed 

electron densities, respectively. These expressions are valid for 

non-degenerate semiconductors. T is the electron temperature, 

which is approximated to be equal to the lattice temperature, 
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and kB is the Boltzmann constant. In Equations (3) and (5), 

electrons are assumed to have a scalar effective mass. Equation 

(6) is the Poisson equation, modified to include the 

piezoelectric contribution. 

Following the approach of Byer [22] and using Equations 

(7)–(10), the general wave equation can be expressed as: 

 
2

0 02 2

1

L

J E u
E E

t zc t
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       

   
,                 (11) 

 

where J  represents the perturbed current density, which 

is defined as: 

 

0 0J n ev nev  .                                                            (12) 

 

Here, 
1/ 2

0 0( )L Lc      denotes the velocity of the 

electromagnetic wave in the lattice. The quantity 0v  is derived 

from Equation (3) by assuming that the pump wave is 

proportional to 
0 0exp[ ( . )]i t k r  , giving: 
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where 0 0 0x yv v iv   , 0 0 0x yE E iE   ,  

 

and 
0 0 0 0.k v    , /c seB m  . 

 

We assume that the low-frequency perturbations vary 

proportionally with exp[ ( )]i t kz  . Following the method of 

Kumar et al. [15] and employing Equations (1)–(10) in the 

collision-dominated regime ( 0 0 0; . ; .k v k v   ), one obtains: 
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 (electron thermal velocity).  

 

In deriving Eq. (14) we have taken x yu u iu   , 

x yv v iv   , x yB B iB   , and x yE E iE   , where + and 

– signs correspond to the right- and left-hand circular 

polarizations, respectively. The following relations were used 

in the derivation: 
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Equation (15) is obtained from Equation (4), while 

Equation (16) follows from Equation (8). 

Physically, the high-frequency pump wave excites a low-

frequency acoustic wave in the medium, leading to high- and 

low-frequency components of the carrier density fluctuations, 

denoted by nf and ns, and perturbed electron fluid velocities, vf 

and vs, oscillating at the frequencies 1 0( )      and   of 

the generated electromagnetic and acoustic waves, 

respectively. 

Based on the discussion above, Equation (14) can be 

expressed as: 
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where 
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The quantity nf contains components at frequencies 

0   . Higher-order components 0 b    (b > 1) are 

negligible because they are non-resonant, unlike the primary 

component 0   , which satisfies the resonance condition 

c p     . Thus, Equation (17) can be expressed for the 

two main components of nf as: 
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Assuming 0 ( )R p      and 0   , Equation (19) 

reduces to: 
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where 0 R     . 

 

By applying Equations (1) and (6), we obtain: 
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Here, 1/ 2

44( / )tc C   represents the acoustic velocity in 

the crystal. Equation (8) can be used to express u  in terms of 

E  as: 
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Combining Equations (12), (15), and (20)–(22) gives the 

components of J  as: 
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in which  
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and have assumed 
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We now consider the general wave equation (11), which 

describes the scattered transverse electromagnetic wave with 

frequency 1 0( )    and wave number k1, varying as 

1 1exp[ ( )]i t k z  . Under the specified configuration, Equation 

(11) simplifies to: 
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Following the approach of Yariv [1], and employing 
Equations (6) and (21), Equation (1) can be expressed as: 

 

2 2 2 10
14 ( )

2
t

E
u ik e k c E



 
     

 
.                          (26) 

 

Substituting Equations (23) and (26) into (25) and 

performing the necessary mathematical simplifications leads to 

the general dispersion relation describing the stimulated 

Brillouin scattering (SBS) phenomenon: 
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Equation (27) describes two independent circularly 

polarized modes, corresponding to E+ (right-hand) and E− (left-
hand) polarizations. This circular polarization arises from the 

coupling of two transverse, linearly polarized modes due to the 

presence of a finite longitudinal magnetostatic field Bs. In the 

absence of Bs, the system reduces to the conventional SBS of 

transverse waves. Under such conditions, the dispersion 

relation can be analyzed to explore the possibility of SBS and 

the resulting Brillouin instability in n-type piezoelectric 

semiconducting plasmas. However, since our focus is on 

circularly polarized waves, we consider Equation (27) in the 

presence of the magnetostatic field. 

 

3.  Growth rate and threshold field 

In the slow-wave limit, applying the quasi-static 

approximation 
2 2 2

1 1( )Lk c    allows us to simplify the 

dispersion relation, which can then be expressed as: 
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                                                                                       (28) 

 

From the above equation, it is evident that the shear 

acoustic and transverse electromagnetic waves—obtained by 

setting the first and second factors on the left-hand side to zero, 

respectively—are coupled through the nonlinear 

electrostrictive force in the piezoelectric semiconducting 

plasma. The presence of a high-power pump with amplitude 

0 0E   is a necessary condition for this coupling, as clearly 

indicated by the equation. 

We now turn to the main focus of this work: the possibility 

of stimulated Brillouin scattering (SBS) and the Brillouin 

instability of acousto-helicon waves under a high-power 

helicon field. The dispersion relation (28) is solved for 

complex ( )r ii      with real positive values of k, such that 

r tkc  . By equating the imaginary parts, one obtains: 
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Here, 01 / tv c    represents the growth rate. Since v0, 

the oscillatory electron fluid velocity from Equation (13), is 

much greater than the acoustic velocity ct, it follows that 0 

. Therefore, under the condition     , Equation (29) can be 

rewritten as: 
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Equation (30) indicates that in the absence of the pump 

field E0, the growth rate vanishes. This implies that a finite 

pump field amplitude is essential for studying SBS, which is a 

fundamental prerequisite for investigating SBS phenomena. 

Using the known numerical values of e14 and  , one can 

consider 14 0 / 2e E   for a value of E0 in the range of l08 to 

109 Vm-1. Under these conditions, Equation (30) shows that 

Brillouin instability occurs only when: (a) Q > 1 for the right-

hand circularly polarized Brillouin mode, and (b) Q < 1 for the 
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left-hand circularly polarized Brillouin mode, thereby defining 

the onset of instability at: 
 

1 0Q  .                                                                       (31) 
 

By substituting the value of Q into Equation (31), the 

threshold electric field can be determined as: 

 
1/ 2

0 0
0

0 0

( )
2( )

c R t
th

cm
E

e k k


       
    

    
.                          (32) 

 

Equations (30) and (32) can be appropriately applied to 

various n-type piezoelectric semiconductors that satisfy the 

assumptions made in their derivation, for the purpose of 

studying Brillouin instability. 

 

4.  Results and discussion 
This paper presents an analytical study of the Brillouin 

instability of acousto-helicon waves under the influence of a 

high-power helicon pump. The analytical results are applied 

specifically to n-type InSb at 77 K. The physical constants 

used in the analysis are as follows: 
 

m = 0.014m0, e14 = 0.054 Cm-l,   5.8×103 kg m-3,  

L  17.8,   3.5×1011 s-1. 
 

Figure 1 illustrates the variation of the threshold electric 

fields 0( )thE   with the magnetostatic field ωc for different 

wave numbers. From the graph, it is evident that 0( )thE   

decreases as both ωc, and k increase. However, for other mode, 

0( )thE   increases with ωc and decreases with increasing k.  

Figure 2 shows the dependence of the growth rates i  

on the magnetostatic field (ωc) for different values of k at E0 = 

5×106 Vm-l. The graph indicates that the growth rate of one 

mode ( i ) is independent of k, while the other ( i ) 

decreases as k increases. In general, the growth rates of both 

modes decrease with increasing ωc, although at higher ωc 

values, i  almost independent of ωc . 
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Figure 1: Variation of the threshold pump electric field 0( )thE   with 

the magnetostatic field ωc for different wave numbers k: (1) 4×105, (2) 

8×105, (3) 2×106, (4) 6×106, (5) 106 m-1. 
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Figure 2: Variation of the growth rates i  of the excited acousto-

helicon waves with the magnetostatic field ωc for different wave 

numbers k: (1) 4×105, (2) 8×105, (3) 2×106, (4) 6×106, (5) 107 m-l at E0 

= 5×106 Vm-l. 
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Figure 3: Variation of the growth rates i  of the excited acousto-

helicon waves with the pump electric field amplitude E0 at ωc = 

2×1013 s-1 and k = 2×106 m-l. 

 

Figure 3 depicts the relationship between the growth rates 

i  and the pump field E0 at ωc = 2×1013 s-l and k = 2×106 m-

l. It is observed that i  increases with E0 while i  

decreases. Additionally, higher collision frequencies ν increase 

the threshold electric fields because greater damping must be 

overcome for the growth of the excited modes. Higher carrier 

concentrations reduce the growth rates and increase the 

threshold field amplitudes. It is also noteworthy that the 

threshold electric fields and corresponding growth rates are 

sensitive to the electron effective mass. 
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The electric field amplitudes considered in this study can 

be related to the pump intensity I0 using the expression 
2

0 0 0 0 / 2LI c E    , where   is the refractive index of the 

crystal (3.9 for InSb) and c0 is the speed of light in vacuum. 

The calculations presented here are based on E0 values ranging 

from 105 to 107 Vm-1, corresponding to an intensity range of 

6.06×107 to 6.06×1011 Wm-2. These field strengths can be 

applied without causing significant damage to the crystal. Such 

threshold fields are achievable using a high-power helicon 

source, which is experimentally feasible [23]. 

 

5.  Conclusions 
The results presented in this study indicate that stimulated 

Brillouin scattering (SBS) and the resulting Brillouin 

instability of acousto-helicon waves can be achieved in 

longitudinally magnetized n-type piezoelectric semiconducting 

plasmas irradiated by a high-power helicon pump wave. 

Moreover, the plasma parameters in such media can be varied 

over a wide range with relative ease, allowing for flexible 

experimental conditions. 
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