RP Current Trends In Engineering And Technology
Vol. 3, No. 4 (October - December 2024) pp. 80-85
e-ISSN: 2583-5491

RESEARCH PLATEAVU
JBLI {ERS

Cite this article: Ajit Singh, High-intensity helicon wave-induced stimulated Brillouin scattering in magnetized piezoelectric

semiconductors, RP Cur. Tr. Eng. Tech. 3 (2024) 80-85.

Original Research Article

High-intensity helicon wave-induced stimulated Brillouin scattering in

magnetized piezoelectric semiconductors

Ajit Singh*

Assistant Professor, Department of Physics, Government College, Kalka - 133302 (Panchkula) Haryana, India

*Corresponding author, E-mail: ajitnehra2010@gmail.com

ARTICLE HISTORY
Received: 03 Oct. 2024
Revised: 18 Dec. 2024
Accepted: 21 Dec. 2024
Published online: 24 Dec.
2024

ABSTRACT

A comprehensive analytical study is carried out on the stimulated Brillouin scattering (SBS) of a high-
intensity helicon pump wave traveling parallel to an applied magnetic field within an n-type cubic
piezoelectric semiconducting plasma of a specific symmetry class. Using a hydrodynamic approach for a
uniform, piezoelectric, single-component (electron) semiconducting plasma, a general dispersion
relation is derived. The study examines the threshold values of the pump electric field and the initial

growth rates of the excited modes, considering both left-hand and right-hand circularly polarized waves
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1. Introduction

Driven by the growing interest in stimulated Brillouin
scattering (SBS), this paper presents the results of an analytical
study on Brillouin instability in a longitudinally magnetized
piezoelectric semiconducting plasma exposed to a high-power
helicon pump wave. The work also explores the conditions
under which the unstable Brillouin mode can grow within the
crystal.

In general, the dielectric constant of a scattering medium
is influenced by its primary excitations, such as molecular
vibrations or acoustic and optical phonons, which enable the
coupling of an incident light wave with these excitations. In a
semiconducting plasma, a time-dependent electric field induces
a corresponding electrostrictive strain, which generates an
acoustic wave in the medium. This interaction between the
electromagnetic wave and the acoustic wave leads to the
phenomenon of stimulated Brillouin scattering (SBS). The
scattered wave can propagate in various directions, but the
intensity is maximized in the backward direction, accompanied
by a characteristic frequency shift equal to the acoustic
frequency [1]. The theoretical foundations of SBS were first
developed by Kroll [2] and Tang [3], and later reviewed by
Starunov [4] and Fabelinskii [5]. Singh et al. [6] provided a
simplified analytical approach to analyze the influence of
piezoelectricity and magnetic field on stimulated Brillouin
scattering. Experimentally, Asam et al. [7] observed SBS in
germanium using a pulsed CO: laser, while Winterling [8] and
colleagues utilized SBS-generated ultrasonic waves in the
microwave range to study ultrasonic absorption in quartz at 29
GHz. Sussman and Ridley [9] reported measurements of
amplified acoustic flux in oxygen-doped n-GaAs crystals using

when the pump exceeds the threshold. Numerical evaluations are performed for n-type indium
antimonide (n-InSb) at 77 K subjected to a high-power helicon wave. The laser field intensities
considered range from 107 to 1011 Wm-2, which are assumed to remain below the damage limit of the
InSb crystal, and the wave amplitudes are within experimentally achievable levels.

a continuous-wave Nd:YAG laser (1.06 um). More recently,
Huey et al. [10] demonstrated experimental SBS in
microwave-plasma interactions.

A survey of the literature indicates that no studies have yet
explored the conditions required to achieve amplified acousto-
helicon flux in a solid medium irradiated by a high-power
helicon pump wave. The nonlinear excitation of acousto-
helicon waves in piezoelectric semiconducting plasmas has
been a highly active area of research due to its significant
applications in semiconductor diagnostics and device
technology [11-14]. Recently, Kumar et al. [15] analyzed the
influence of piezoelectricity, doping and magnetostatic field on
Brillouin amplification in compound (A"BY and A''BVY")
semiconductors. The present study focuses on an analytical
investigation of stimulated Brillouin scattering (SBS) and the
resulting instability of acousto-helicon waves in a
homogeneous, nondegenerate  n-type  (electron-only)
piezoelectric semiconductor exposed to a high-power helicon
pump wave. The model considers a cubic piezoelectric crystal
of the symmetry class 43m subjected to a strong longitudinal
magnetostatic field B, along the z-axis, parallel to the electric
field E, of the high-amplitude helicon pump wave
E, expli(wyt —ky,2)] . The scattered electromagnetic and
transverse acoustic waves, denoted by (o, k) and (w,k)
respectively, also propagate along the z-direction. These waves
satisfy the energy and momentum conservation conditions:
o, =0,-® and k =k,—k. The analysis employs the
coupled-mode theory, previously used by Kumar et al. [15] for
a simplified treatment of SBS.

(SOl
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However, the current study has been carried out under the
following assumptions [16-19]:

(i) The amplitude of the pump electric field is assumed to
remain below the damage threshold of the crystal under
consideration.

(if) Nonlinear material effects, which are significant in
strongly piezoelectric materials like LiNbOs3, are neglected
by focusing on moderately piezoelectric semiconductors,
such as I11-V binary compounds.

(iii) The semiconductor is assumed to have an isotropic and
nondegenerate conduction band.

(iv) Band non-parabolicity, which contributes approximately
3% deviation from a parabolic band structure, is neglected.

(v) Electron concentrations are taken such that the electron
plasma frequency is sufficiently large and nearly matches
the pump frequency.

(vi) The pump wave vector K, isassumed to be approximately
twice that of the acoustic wave vector k (k, = 2k).

Therefore, the present analysis is well-suited for studying
SBS in n-type heavily doped I11-V semiconductors, such as n-
InSb and n-GaAs, when irradiated with a high-power circularly
polarized electromagnetic wave. In this study, the dispersion
relation is solved for complex frequencies o(= o, +iw;) with
real positive values of the wave vector k throughout the
analysis. A propagating mode is considered unstable and
growing only when e, is less than zero with |mi| , representing
the initial growth rate of the unstable mode. Detailed numerical
evaluations have been carried out to determine conditions for
the onset of Brillouin instability and the initial growth rates of
unstable acousto-helicon modes at pump field amplitudes
significantly above threshold, specifically for n-InSh at 77 K.

2. Dispersion relation

We adopt a hydrodynamic model for a homogeneous,
single-component (electron) piezoelectric semiconducting
plasma, following the geometrical configuration described in
Section 1. The time-dependent electric field EO of the pump
wave induces an electrostrictive strain in the medium, which
generates an accompanying acoustic wave. This acoustic wave
modulates the optical dielectric constant, enabling energy
exchange between the acoustic wave and the electromagnetic
wave, whose frequency is approximately equal to that of the
acoustic wave. Consequently, applying the frequency-matching
condition o, =, -, Yyields the relation ®,~2w. The
resulting net electrostrictive force per unit volume is given by

[1].
.1 -,
F=_TVE". 1)

Here, T" denotes the change in the optical dielectric
constant, which is approximately 10-** Fm™,

We assume that the internally generated acoustic wave is a
pure shear wave propagating along the z-axis, which
corresponds to the (001) cubic axis of the crystal. The lattice
displacement occurs along the x- and y-axes, representing a
transverse sound wave, corresponding to the (110) and (1170)
cubic axes, respectively. The analysis considers a cubic
piezoelectric 111-V binary semiconducting crystal of a specific
symmetry class. For the propagation of low-frequency acoustic
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vibrations in a piezoelectric crystal, the lattice’s electric and
elastic properties are coupled; thus, the polarization and
accompanying electric field must be taken into account. The
piezoelectric characteristics of the material are described by the
elements € of its piezoelectric tensor [20]. It is well
established that cubic crystals of class 43m possess only a
single independent piezoelectric constant [21], e€ia.
Consequently, the lattice equation of motion, including the
electrostrictive force (as given in (1)) and under the condition
u; = 0, can be expressed as follows:

ou, . 0o, Lo O +£6_EZ (2a)
P ~ o2 "™y T2
and

o%u o%u O0E, T oOE2

D Y _y+___ 2b
P "2 My & (2D)

Here, p represents the crystal density, Cas is the relevant
elastic stiffness constant, and ey denotes the piezoelectric
stress constant. The other fundamental equations employed in
this analysis are as follows:

Ny = 8= =

EOJr(vO.V) o+ VW, ZE[E0+(V0XBO)] (3)

N (@, 9+ = [E+ W xB)]- < on 4

ot m mn,

%Hvoﬁ)mno(ﬁ.\n:o (5)

% _en &, 0% ©)

0z e & ozt

- - 0B

VxE=-= 7
p )

Vxh =3+ (8)

ot

D=¢E+P )

p-reX (10)
oz

Equations (3) and (4) represent the zero- and first-order
momentum transfer relations, where v, and v denote the
oscillatory electron fluid wvelocities induced by the electric
fields of the pump and scattered waves, respectively.
B, =k, xE, /@, is the oscillatory magnetic field of the
incident laser radiation. Equation (5) is the continuity equation,
with ng and n representing the unperturbed and perturbed
electron densities, respectively. These expressions are valid for
non-degenerate semiconductors. T is the electron temperature,
which is approximated to be equal to the lattice temperature,
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and kg is the Boltzmann constant. In Equations (3) and (5),
electrons are assumed to have a scalar effective mass. Equation
(6) is the Poisson equation, modified to include the
piezoelectric contribution.

Following the approach of Byer [22] and using Equations
(7)—(10), the general wave equation can be expressed as:

Lo 8] 1 0°E ol
VXVXEI—MOE—C—ZW'FHOF(EEJ, (11)
L

—

where J represents the perturbed current density, which
is defined as:

J =nyev+ney,. (12)

Here, C (=g, 1) "> denotes the velocity of the
electromagnetic wave in the lattice. The quantity Vv, is derived
from Equation (3) by assuming that the pump wave is
proportional to exp[i(wyt —k,.F)], giving:

Vo, =i E&(a)o —ivto,) "y, (13)

+ o,

where vy, =V,, *iv,,, E, =Ej, *iE

y? 0y *

and @, = o, —k,.V,, ®, =eB,/m.

We assume that the low-frequency perturbations vary
proportionally with exp[i(wt—kz)]. Following the method of
Kumar et al. [15] and employing Equations (1)—(10) in the
collision-dominated regime (v >> w;K.V,;K,.V,), one obtains:

o°n

—2+v%+k2v§1n$81n+62ui =i(k+k,)E,n. (14)

2 - — 4 —2
@, @O ®,0

Here 3, =

o@—ivFo,) ok’c —o’)(@—ivFo,)

20060 = e[
5, = 0% LS N _[_0] Ep. — oYy,

) O
27 me (K -o?) m\ o,
2 1/2
_ - ny,e
o=0-kV,, o, = (plasma frequency)
me,g,

k T 1/2
and Vy, =(B?j (electron thermal velocity).

In deriving Eq. (14) we have taken u, =u,+iu,
v, =V, tiv,, B, =B, +iB , and E, =E, £iE , where + and
— signs correspond to the right- and left-hand circular
polarizations, respectively. The following relations were used
in the derivation:

v, = —[E](Ej (@®-ivFo,)™,
m/)\ ®

(15)

2
i [k_ _ ng E, =nyev, —koe,U. . (16)

Ho®

Equation (15) is obtained from Equation (4), while
Equation (16) follows from Equation (8).

Physically, the high-frequency pump wave excites a low-
frequency acoustic wave in the medium, leading to high- and
low-frequency components of the carrier density fluctuations,
denoted by n: and ns, and perturbed electron fluid velocities, vs
and vs, oscillating at the frequencies o,(=w,*®) and o of
the generated electromagnetic and acoustic  waves,
respectively.

Based on the discussion above, Equation (14) can be
expressed as:

o*n,  on, _ _

pe +v5+mRnf =i(k+Kk,)E,ng 17)

and

L T S N TR (18)
me (k’c? —w?) et

where

4 —2
®,0

Q% = @ +ivo+ T o= )
ok —o7)(@—-ivFn,)

2 —
o, 0
2 1,2,,2 p
op =KV, +——.
(O]

The quantity n; contains components at frequencies
®, t®. Higher-order components o,tbo (b > 1) are
negligible because they are non-resonant, unlike the primary
component ®, £, which satisfies the resonance condition
®<<®, #®,. Thus, Equation (17) can be expressed for the
two main components of ns as:

n, =i(k+ ko)Eons[{m'é — (o, +o)? + iv(o, +o)¥*

Hof, — (@, ~0) +iv(o, ~0)} 1. (19)

Assuming o, * wg(*©,) and o<<w,, Equation (19)
reduces to:

n __i(k+k0)I§0nS g oy
' o’ (0+8-iv) (0-6-iv) |

(20)

where 8 =@, — oy .

By applying Equations (1) and (6), we obtain:

n. = Hcoz —k?c? - uk’
S 't
€

(o) )

(1)
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Here, ¢, =(C,/p)"* represents the acoustic velocity in
the crystal. Equation (8) can be used to express u, in terms of
E, as:

J, i k?
=1 E.. (22)
koe,,  koey, [poo —emy

Combining Equations (12), (15), and (20)-(22) gives the
components of J as:

22
W, |Q
4

__ &
Y (1-Q)| (@}

—-ivFo,) o

— (k? (ol)} E.. (23)

where @, =, — IZ.\?O and

— VOirngl 1_ 2|8(k —: kO)ZEO ’ (24)
wke, oy (V- +87)
in which
®? —k2c? — k2e14 e _LEO
t ep 4 2
Z =

o FEJ

and have assumed E, >> Vi G4y

(,Op €

+ .

We now consider the general wave equation (11), which
describes the scattered transverse electromagnetic wave with
frequency o,(=®,) and wave number ki, varying as
expli(mt —k,z)] . Under the specified configuration, Equation
(11) simplifies to:

w? 2
0 ou;
—k/E, +iouyd, + C% E, =_MOFE[E+ pe j (25)

Following the approach of Yariv [1], and employing
Equations (6) and (21), Equation (1) can be expressed as:

Fon j(mz —Kk2c?)'E, .

Substituting Equations (23) and (26) into (25) and
performing the necessary mathematical simplifications leads to
the general dispersion relation describing the stimulated
Brillouin scattering (SBS) phenomenon:

(26)

u, =—ik (eM -

ok clor E (914_F2EOJ
K22 — ? +i— — E, =0,
(1—Q) p(o” —k%c)
(27)
oo
where A:+—ig(kfcf ~0?).
o (@ -iv¥e,) o
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Equation (27) describes two independent circularly
polarized modes, corresponding to E- (right-hand) and E- (left-
hand) polarizations. This circular polarization arises from the
coupling of two transverse, linearly polarized modes due to the
presence of a finite longitudinal magnetostatic field Bs. In the
absence of B, the system reduces to the conventional SBS of
transverse waves. Under such conditions, the dispersion
relation can be analyzed to explore the possibility of SBS and
the resulting Brillouin instability in n-type piezoelectric
semiconducting plasmas. However, since our focus is on
circularly polarized waves, we consider Equation (27) in the
presence of the magnetostatic field.

3. Growth rate and threshold field

In the slow-wave limit, applying the quasi-static
approximation  (k’c’ >>w;) allows us to simplify the
dispersion relation, which can then be expressed as:

((02 _K2c 2) Ciii(‘)iaﬁ _
1-Qo, P

poIkiciol E, I'E,
g )
(28)

From the above equation, it is evident that the shear
acoustic and transverse electromagnetic waves—obtained by
setting the first and second factors on the left-hand side to zero,
respectively—are ~ coupled  through  the  nonlinear
electrostrictive force in the piezoelectric semiconducting
plasma. The presence of a high-power pump with amplitude
E, =0 is a necessary condition for this coupling, as clearly
indicated by the equation.

We now turn to the main focus of this work: the possibility
of stimulated Brillouin scattering (SBS) and the Brillouin
instability of acousto-helicon waves under a high-power
helicon field. The dispersion relation (28) is solved for
complex o(=®, +icw,) with real positive values of k, such that
o, =kc, . By equating the imaginary parts, one obtains:

_ I'E KeZo I
w; = +l:(1_Q)(614 - 20 j[wz Lmlzuo JEOJrjl : (29)
Ctp('op(p

Here, o=1-v,/c, represents the growth rate. Since vo,
the oscillatory electron fluid velocity from Equation (13), is
much greater than the acoustic velocity c, it follows that ¢ <0

. Therefore, under the condition (p——|(p| Equation (29) can be
rewritten as:

o By )| o ke oy,

Equation (30) indicates that in the absence of the pump
field Eo, the growth rate vanishes. This implies that a finite
pump field amplitude is essential for studying SBS, which is a
fundamental prerequisite for investigating SBS phenomena.
Using the known numerical values of eis and I', one can
consider e, >>TE;/2 for a value of Eq in the range of 10° to
10° Vm*. Under these conditions, Equation (30) shows that
Brillouin instability occurs only when: (a) Q > 1 for the right-
hand circularly polarized Brillouin mode, and (b) Q < 1 for the
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left-hand circularly polarized Brillouin mode, thereby defining

the onset of instability at:
1-Q=0. (31)

By substituting the value of Q into Equation (31), the
threshold electric field can be determined as:

1/2
m( o, ¥ o, M, VC

E,), =—| —2 ¢ 0™Rr V5t .
oo e[ y J{Z(mko)}

(32)

Equations (30) and (32) can be appropriately applied to
various n-type piezoelectric semiconductors that satisfy the
assumptions made in their derivation, for the purpose of
studying Brillouin instability.

4. Results and discussion

This paper presents an analytical study of the Brillouin
instability of acousto-helicon waves under the influence of a
high-power helicon pump. The analytical results are applied
specifically to n-type InSb at 77 K. The physical constants
used in the analysis are as follows:

m = 0.014mo, €14 = 0.054 Cm"!, p =5.8x10% kg m*?,
g =178, v= 3.5x10M" g1,

Figure 1 illustrates the variation of the threshold electric
fields (E,.);, with the magnetostatic field w. for different
wave numbers. From the graph, it is evident that (E,,),,
decreases as both w¢, and k increase. However, for other mode,
(E,_ )y increases with «c and decreases with increasing k.

Figure 2 shows the dependence of the growth rates |wii|
on the magnetostatic field (wc) for different values of k at Eq =
5x10% Vm™. The graph indicates that the growth rate of one
mode (|e,,|) is independent of k, while the other (|e;_|)
decreases as k increases. In general, the growth rates of both
modes decrease with increasing wc, although at higher o
values, |o;, | almost independent of e .

12

11 H

(Eo)yr (o), (x10° VM)

10 25 40 55 70 85
o, (x10" %)

Figure 1: Variation of the threshold pump electric field (Eg)y with
the magnetostatic field o for different wave numbers k: (1) 4x10°, (2)

8x10°, (3) 2x108, (4) 6x108, (5) 106 m™.

100 115 13.0 145

(@), (@) (x10°s")

0 T T T T T T T T
10 25 40 55 70 85 100 115 130 145
o, (x10% s)

Figure 2: Variation of the growth rates |w;.| of the excited acousto-
helicon waves with the magnetostatic field wc for different wave
numbers k: (1) 4x10°, (2) 8x105, (3) 2x10°%, (4) 6x108, (5) 10" m" at Eo
=5x10° vVm’',

10°

L1
\
\

1
N

10 e

ol
~

(0.), (@) 67)

10° T T T T T T T T
1 2 3 4 5 6 7 8 9 10
E, (x10°Vm™)
Figure 3: Variation of the growth rates |(Dii| of the excited acousto-
helicon waves with the pump electric field amplitude Eo at @ =
2x10% s and k = 2x106 m™,

Figure 3 depicts the relationship between the growth rates
;.| and the pump field Eo at o = 2x10% s and k = 2x10° m
| It is observed that |e,| increases with Eo while |o_|
decreases. Additionally, higher collision frequencies v increase
the threshold electric fields because greater damping must be
overcome for the growth of the excited modes. Higher carrier
concentrations reduce the growth rates and increase the
threshold field amplitudes. It is also noteworthy that the
threshold electric fields and corresponding growth rates are
sensitive to the electron effective mass.
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The electric field amplitudes considered in this study can
be related to the pump intensity lo using the expression
ly = Cogosy |Eo|* /20, where 1 is the refractive index of the
crystal (3.9 for InSb) and co is the speed of light in vacuum.
The calculations presented here are based on Eo values ranging
from 10° to 107 Vm™, corresponding to an intensity range of
6.06x107 to 6.06x10'* Wm=2 These field strengths can be
applied without causing significant damage to the crystal. Such
threshold fields are achievable using a high-power helicon
source, which is experimentally feasible [23].

5. Conclusions

The results presented in this study indicate that stimulated
Brillouin scattering (SBS) and the resulting Brillouin
instability of acousto-helicon waves can be achieved in
longitudinally magnetized n-type piezoelectric semiconducting
plasmas irradiated by a high-power helicon pump wave.
Moreover, the plasma parameters in such media can be varied
over a wide range with relative ease, allowing for flexible
experimental conditions.
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